版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
含不同成分尿素的夾層化合物nh2conh2xi2的制備及其熱、電輸運性質(zhì)
1非價值主義定義tis2hasananisodic結(jié)構(gòu)與a3個a.m.3m.它是一個知道的兩個直接組織(1t,2h),以及作為一個緩慢排列的有序布局。當(dāng)?shù)豤oordinal證據(jù):第一tis2和第二tis2是地方coordinal證據(jù)(2h)。tis2的主要受害者是tis2(1噸,2噸,2噸),tis6c2可作為一個整體配置,而tis2是兩個行的接受者。鋼條的跡象是,通過緩慢排列的有序排列,以及緩慢排列的特征。緩慢排列的鐵線蓮是一個整體。Layered-structuredTiS2iswellknownforitscapabilityofintercalationbyawiderangeofelementsintoitsvanderWaalsgap.SinceLi+caneasilyintercalateandleavevanderWaalsgapofTiS2,ithasbeenstudiedasapromisingcathodematerialforrechargeablelithium-ionbatteries.BesidesLi,transitionmetals,suchasFe,CoandNi,havebeensuccessfullyinsertedintothegapofTiS2,andinfluencesofthisintercalationonthephysicalpropertiesofthecorrespondingcompoundswereinvestigatedandexplored.Specially,H.ImaietalreportedthatTiS2haslargethermopowerSandpowerfactor(S2/ρ,ρiselectricalresistivity)atroomtemperature,indicatingthatTiS2isapotentialcandidateforthermoelectricapplications.Veryrecently,theworkinourgroupindicatedthatlargeenhancementofthermoelectricpropertiesforTiS2canberealizedbyproperBiinteractionintoitsvenderWaalsgap.Astoreductionofthermalconductivity,Slackproposedthatacrystalstructurecontainingweaklyboundatomsormoleculesthat“rattle”withinatomiccagescouldreducelatticethermalconductivity,andlatterexperimentsprovedhisidea.AccordingtoSlack’stheory,ourgrouphavecompletedsomeworks:intercalationofheavyelementBi,Gd,NdintoTiS2mayreduceitsthermalconductivitybyatomic“rattling”andraiseitsthermoelectricproperties,anddopingatTisitewithmetalelementsNi,Mg,Cdcanalsoadjustitsproperties.Nevertheless,toourknowledgelittleworkaimedatimprovingthermoelectricpropertiesofTiS2bymeansofintercalationoforganiccompoundshasbeenreported.NH2CONH2intercalationintoTiS2wouldhaveprofoundinfluenceontheoverallphysicalpropertiesofitsintercalatedcompounds,whichonehardlyknownindetail.Inourwork,intercalatedcompounds(NH2CONH2)xTiS2havebeensynthesizedbymoistchemicalmethodinautoclave,anditsthermalandelectricalpropertiesareinvestigated,andtheresultsindicatethatNH2CONH2intercalationintoTiS2candecreaseitsthermalconductivityeffectively.2u2004范圍Polycrystalsofureaintercalatedcompounds(NH2CONH2)xTiS2werepreparedbythree-stepprocedure.Firstly,TiS2powderwaspreparedbydirectreactions(inanevacuatedquartzampoule)oftitaniummetalpowder(99.99%)tosulfurpowder(99.999%)at610℃for7days.Secondly,ureawasdissolvedinorganicimpregnantbenzenegainedthesolutionwithacertainconcentrationC(≈12.5,25,50mmol/L,respectively),andwedefinedthenamesforthesampleswithdifferentintercalationcontents,S1#,S2#,S3#forureaintercalatedcompoundssynthesizedbydifferentconcentrationsC≈12.5,25,50mmol/L,respectively.Thirdly,TiS2andthebenzenesolutionofureawereloadedintotheautoclave,whichwereheat-treatedat393Kfor15hours,thenleachedtheintercalatedcompoundfromthesolution.Thebulkspecimensfortransportpropertymeasurementswereobtainedbypressingat300MPa,350Kinvacuum.ThephasestructuresandthecompositionsoftheobtainedsampleswerecheckedbyusingX-raydiffraction(XRD,CuKαirradiation)andEnergyDispersiveX-raySpectroscopy(EDS),respectively.Accuratemeasurementsoflatticeparameterswererealizedthroughcalibrationwithsiliconstandard.Latticestrainswereestimatedfromlinebroadeningofthereflectionpeakswhereinstrumentalbroadeningwascalibratedusingasiliconstandard.Theinfrared(IR)spectrawereobtainedbyFourierTransformInfrared(FTIR)(Ramanspectrometer(NicoletCorp.USA)atroomtemperature.Tomeasuretheirthermoelectricproperties,thesynthesizedpowderswerecompactedbypressing(underthepressureof300MPa)invacuumatroomtemperaturetoobtainbulksampleswiththesizeof30mm×10mm×(~)1.5mm.Thenbar-shapedspecimensofthesize13mm×3mm×(~)1.5mmwerecutfromthebulksamplesforthemeasurements.Fourprobes(Custraps)wereelectricallyandthermallyattachedtothespecimensbysilverconductiveadhesivepaste(PhentexCorp.USA)tomeasuretheirDCresistance,andwhenthermopowerandthermalconductivityweremeasuredthemiddletwoprobeswereusedtoexploretemperaturegradient(difference)andpotentialdifference.Allthethermoelectricproperties(DCresistance,thermopowerandthermalconductivity)weremeasuredsimultaneouslybyusingaphysicalpropertymeasurementsystem(PPMS,QuantumDesign,USA)inthetemperaturerangefrom5to310K.3.影響因素的決定3.1pe直利克氏體laticinpincipackuregas3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.Figure1showsXRDpatternsforthesynthesizedspecimensS1#,S2#andS3#.ItcanbeseenfromFig.1thatallthemainpeaksontheXRDpatternsmatchwellwiththoseforstandardTiS2(JCPDS:65-3369),indicatingthattheintercalatedspecimenshavethesamecrystallographicstructureasthatofTiS2.However,astheureaintercalatedintothevanderWaalsgapsofTiS2,someureaformingadmixturewithTiS2,sotherehavefewpeaksofureaoccurredintheXRDpatterns,forexample,thepeakaround2θ=22.5degreeisthe(110)peakofurea,andtheintensityofthispeakenhanceswiththeincreasingofureaaddition,implyingthatsomeureamaybeformadmixturewithTiS2insteadofintercalatingintothevanderWaalsgapsofTiS2.Latticeparametermeasurement(Fig.2)indicatedthatlatticeconstantcexpandedfrom5.6953nmto5.7056nmfromstandardTiS2toS3#,correspondingly,latticeachangedslightlyfrom3.4073to3.4047nm.ThedecreaseoflatticeconstantacouldbeexplainedthattheshrinkofthelatticesduetotheCoulombattractionbetweentheH+ofamidogen(-NH2)inureaandtheS2-oftitaniumdisulfide.TheseresultsindicatedthatureamoleculeweresuccessfullyintercalatedintothevanderWaalsgapsofTiS2,formingintercalationcompounds(NH2CONH2)xTiS2,whichcausedlatticeconstantcincreasingwiththeintercalationofureamolecule,andlatticeconstantadecreasingthatisobviouslydifferentfromtheintercalationofmetalatoms.Tocharacterizetheureaintheintercalatedcompounds(NH2CONH2)xTiS2,wehaveobtainedtheIRspectra(Figure3)byFTIRspectrometer.Fig3showthattheIRspectraofthespecimensS1#,S2#,S3#.Itcanbefoundthat8peaks(around3798,3429,2929,2388,2300,1630,1053,669cm-1)appearedintheIRspectrumsoftheureaintercalatedcompounds.Itisknownthatthepresenceofabsorptionpeaksat1630cm-1,canbeassignedtovibrationalfrequenciesofC=Obandvibration,whilethebroadpeakabsorptionat3429cm-1isassignedtotheN-Hbandvibration,whicharethatthecharacteristicpeaksofurea.3.2tis2sivitivitizactsit3.TheDCelectricalresistivityversustemperaturefortheureaintercalatedspecimensS1#,S2#,S3#inthetemperaturerangeof5~310KispresentedinFig.4.Inotherreports,pureTiS2showsametal-likebehavior(i.e.,dρ/dT>0).However,theρ~Tcurvesoftheintercalatedcompounds(S1#,S2#,S3#)showasemiconductor-likebehavior(i.e.,dρ/dT<0)inwholetemperaturerangeinvestigated.ThisisquitecontrarytothatformetalintercalatedcompoundsMxTiS2,whosemetallicbehaviorenhancesafterintercalationofguestelements,indicatingthatthemechanismofelectrontransferafterorganiccompoundureaintercalateintotheVanderWaalsgapsofTiS2isdifferentfromthatofmetal(Bi,Li)intercalation.Inotherwords,presentresultindicatesthatatransitionfrommetal-liketosemiconductor-likebehavioroccursafterureaintercalatingintotheVanderWaalsgapsofTiS2.Inaddition,theelectricalresistivityofureaintercalatedcompounds(NH2CONH2)xTiS2increasesmonotonouslywithincreasingureaconcentrationintheimpregnantatthewholetemperaturerange,whichisalsocontrarytothephenomenaobservedinmetalintercalatedTiS2whereitsresistivityalwaysdecreasedwithincreasingthecontentofintercalatedelements,ashasbeenobservedinBixTiS2andLixTiS2.Thereasonwhy(NH2CONH2)xTiS2transitsfrommetallicbehavior(x=0)tosemiconductingbehavior(x>0:S1#,S2#,S3#)afterintercalatingwithureamaylieinthefactthatTiS2isasemiconductorwithnarrowband-gap.However,inpractice,self-intercalationofTiintoTiS2isunavoidableinthesynthesisprocess.Asaresult,TiS2appearsalmostalwaysasextrinsicsemiconductor.Moreover,ifionizationenergyofself-intercalationTiatomsissmallenough,completeionizationwilloccuratthelowtemperaturesthatcanbereachednormally.IfthenumberofintercalatedTiatoms(actingasdonors)issufficientlarge,adegeneratesemiconductorwillformwhichbehavesmetallically,asjustobservednormallyinTiS2.Asintercalationofureaoccurredintheintercalatedcompounds,accepters(theH+ofamidogen(-NH2)inurea)willbeintroduced.Thenthecarrier(electron)concentrationwilldecreaseifcompensationeffecttakesplace.Consequently,asureacontent(numberofaccepters)ishighenough,de-degenerationofTiS2willoccur,leadingtoappearanceofthesemiconductorbehavior.Inotherwords,theintercalationoforganiccompoundureawouldrevealthenatureofTiS2asanarrowsemiconductor,whichwascoveredbyitsmetallicbehaviorresultingfromhighdegreeofdegeneration.BybestfittingtheexperimentaldatatoMott’svariablerangehopping(VRH)law,wefindthattheconductivitydataof(NH2CONH2)xTiS2(x>0:S1#,S2#,S3#)incorrespondinglow-temperaturerangesareingoodagreementwithMott’stwo-dimensional(2D)VRHmodel,i.e.:σ=σ0exp[?(T0T)1/3](1)σ=σ0exp[-(Τ0Τ)1/3](1)whereT0=8/((kN(EF)lv2)isthehoppingbarrier,and(0isaconstant.Figure5showstheplotsoflnσversusT-1/3fortheintercalatedspecimens.ItcanbeseenthattherearegoodlinearrelationsbetweenlnσandT-1/3atlowtemperaturesforS1#,S2#andS3#,suggestingthatTiS2has2Dtransportcharacteristics.ThefittedvaluesofT0are40.4K,46.7Kand76.9KforS1#,S2#andS3#,respectively.Generally,thevariationoflocalizationlengthlvisnotverystrong.Therefore,theincreaseofT0withincreasingureacontentx(<0.15)wouldlargelyreflectdecreaseinstatedensity(N(EF))atFermisurfacewithcarrierconcentration.Itisunderstandablethatasureacontentincrease(fromS1#toS3#)Fermilevel(EF)decreasewithdecreasingthecarrier(electron)concentrationduetocompensationeffect.3.3u2004范圍lattingThetemperaturedependencesoftotalthermalconductivityκforintercalatedcompounds(S1#,S2#,S3#)areshowninFig.6.Itcanbeseenthatintercalatingofureacausedecreaseintheirthermalconductivity.SimilartothatofpureTiS2(thethermalconductivitydataofpureTiS2werecitedfromreference),thethermalconductivityκoftheintercalatedcompoundsshowsweakdependenceabove~70K,belowwhichκofallthecompoundsincreasesrapidlyandapproximatelylinearlywithincreasingtemperature.OnenoticesfromFig.6thatthelatticethermalconductivityofureaintercalatedcompounds(S1#,S2#,S3#)isobviouslysmallerthanthatofpureTiS2,specially,thethermalconductivityκofS1#about1.5Wm-1K-1atroomtemperature,onlyishalfvalueofpureTiS2.Thisdeceaseoflatticethermalconductivitymayoriginatefromintercalationoftheorganiccompoundureamolecules,whichhavebiggervolumeofcell(150.63?3)andcouldcausephononscatteringbylow-frequencyvibrations,or“rattling”,oftheintercalatedureamoleculesinthevanderWaalsgapofTiS2,ashasbeenshowninBixTiS2.Bycomparison,“rattling”oftheintercalatedureamoleculesinthevanderWaalsgapsofTiS2wouldbeeffectiveinreducingitslatticethermalconductivity,andtheresultscanfurtherconfirmureamoleculesintercalatedtothevanderWaalsgapsofTiS2successfully.ThevariationsoftheSeebeckcoefficient(S)for(NH2CONH2)xTiS2withtemperatureareshowninFig.7.ThenegativevaluesoftheSeebeckcoefficientobservedforallofthespecimensovertheentiretemperaturerangeshowthatthemajorchargecarriersin(NH2CONH2)xTiS2areelectrons,asmention
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年幼兒園食品安全管理協(xié)議書
- 合作投資合同書示例
- 廣州市勞動合同范本參考
- 2024燈飾采購合同范文
- 安徽省淮南市七年級上學(xué)期語文期中試題3套【附答案】
- 提升機租賃合同樣式
- 2024抵押貸款合同協(xié)議書樣式
- 6.2 共筑生命家園(導(dǎo)學(xué)案) 2024-2025學(xué)年統(tǒng)編版道德與法治九年級上冊
- 購房合同協(xié)議書范本
- 倉庫租賃合同樣本
- 安徽省蕪湖市七年級上學(xué)期語文期中試卷(含答案)
- 兩癌知識科普課件
- 食用菌現(xiàn)代高效農(nóng)業(yè)示范園區(qū)建設(shè)項目建議書
- 東營港加油、LNG加氣站工程環(huán)評報告表
- 2024年日歷(打印版每月一張)
- 車用動力電池回收利用 管理規(guī)范 第2部分:回收服務(wù)網(wǎng)點征求意見稿編制說明
- 新劍橋少兒英語第六冊全冊配套文本
- 科學(xué)預(yù)測方案
- 職業(yè)生涯規(guī)劃網(wǎng)絡(luò)與新媒體專業(yè)
- T-WAPIA 052.2-2023 無線局域網(wǎng)設(shè)備技術(shù)規(guī)范 第2部分:終端
- 市政管道開槽施工-市政排水管道的施工
評論
0/150
提交評論