![“直線與平面垂直的判定”的教學(xué)實(shí)踐及其反思_第1頁(yè)](http://file4.renrendoc.com/view/8a7540dd72c5133481ca087b3819cd5a/8a7540dd72c5133481ca087b3819cd5a1.gif)
![“直線與平面垂直的判定”的教學(xué)實(shí)踐及其反思_第2頁(yè)](http://file4.renrendoc.com/view/8a7540dd72c5133481ca087b3819cd5a/8a7540dd72c5133481ca087b3819cd5a2.gif)
![“直線與平面垂直的判定”的教學(xué)實(shí)踐及其反思_第3頁(yè)](http://file4.renrendoc.com/view/8a7540dd72c5133481ca087b3819cd5a/8a7540dd72c5133481ca087b3819cd5a3.gif)
![“直線與平面垂直的判定”的教學(xué)實(shí)踐及其反思_第4頁(yè)](http://file4.renrendoc.com/view/8a7540dd72c5133481ca087b3819cd5a/8a7540dd72c5133481ca087b3819cd5a4.gif)
![“直線與平面垂直的判定”的教學(xué)實(shí)踐及其反思_第5頁(yè)](http://file4.renrendoc.com/view/8a7540dd72c5133481ca087b3819cd5a/8a7540dd72c5133481ca087b3819cd5a5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
“直線與平面垂直的判定”的教學(xué)實(shí)踐及其反思陶維林章建躍執(zhí)筆“中學(xué)教學(xué)核心概念、思想方法結(jié)構(gòu)體系及其教學(xué)設(shè)計(jì)研究”課題組于2007年5月11日~14日在浙江省臺(tái)州市黃巖中學(xué)召開(kāi)了第四次研討會(huì)。會(huì)前指定了五位教師根據(jù)“中學(xué)數(shù)學(xué)核心概念、思想方法教學(xué)設(shè)計(jì)框架結(jié)構(gòu)(實(shí)行搞)”,以“直線谷平面垂直的判定”和“算法的概念”為題,進(jìn)行精心的教學(xué)設(shè)計(jì),有的設(shè)計(jì)還經(jīng)過(guò)集體討論。討論會(huì)上,先由五位教師上課(實(shí)施教學(xué)設(shè)計(jì)),然后課題組以教學(xué)設(shè)計(jì)實(shí)施過(guò)程為載體,分析和評(píng)價(jià)教學(xué)過(guò)程,并反饋到教學(xué)設(shè)計(jì)環(huán)節(jié),提出改進(jìn)教學(xué)設(shè)計(jì)的方案?!爸本€谷平面垂直的判定”由三位教師執(zhí)教。我們采取比較的方式,在分階段回顧三堂課的基礎(chǔ)上,對(duì)教學(xué)設(shè)計(jì)和實(shí)施進(jìn)行反思。在不改變?cè)敢獾那疤嵯?,我們?duì)教師的語(yǔ)言做了適當(dāng)精簡(jiǎn)。1課題的引入三位教師采用了個(gè)不相同的引入方式。1.1教師甲的引入教師:同學(xué)們,空間一條直線與平面有哪幾種位置關(guān)系?學(xué)生1邊演示邊敘述,得到直線與平面的三種位置關(guān)系。教師:直線與平面內(nèi),得到直線與平面平行已研究過(guò),直線與平面相交的位置關(guān)系成為今天要研究的問(wèn)題。在日常生活中,你見(jiàn)過(guò)哪些可以抽象成直線與平面相交的位置關(guān)系(的形象)?請(qǐng)舉例說(shuō)明。學(xué)生:日光燈的掉線與天花板相交;房子的柱子與天花板相交;插在碗里的筷子與(平的)碗底相交。教師:同學(xué)們想象力非常豐富,在生活中確實(shí)有許多可以抽象成直線與平面相交的例子。再比如,教室中的墻角線(兩個(gè)墻面的交線)與地面。(展示圖片)小區(qū)中的某些建筑,撐船師傅的竹竿與水平面都給我們以直線與平面相交的形象。古詩(shī)詞中描寫(xiě)某些自然景觀,如“大漠孤煙直”,“一行鷺上青天”的詩(shī)句,這些都給我們以直線與平面相交的形象。(展示操場(chǎng)上旗桿圖片)旗桿與地面所在的平面也相交。在直線與平面相交的模型中(位置關(guān)系中),你認(rèn)為哪種相交最特殊?學(xué)生:直線與平面垂直。教師:今天我們就研究這種關(guān)系(板書(shū)出示課題)1.2教師乙的引入教師:(用PPT呈現(xiàn)龍卷風(fēng)圖片)同學(xué)們剛進(jìn)教室看到這樣一副壯麗的圖片,我不禁想到唐代詩(shī)人王維的詩(shī)句“大漠孤煙直”。在廣袤無(wú)垠的沙漠上一般炊煙沖天而起給沙漠帶來(lái)無(wú)限生機(jī)。欣賞這一美妙畫(huà)面之后是否想到立體幾何中什么與什么的關(guān)系。學(xué)生:(齊聲)線與面垂直。教師:線與面垂直,很好。說(shuō)明同學(xué)們既有豐富的想象力又有很好的理性思維。請(qǐng)想一想在日常生活中,有沒(méi)有這種線與面垂直的其他例子。學(xué)生:看電視時(shí),視線與畫(huà)面;電線干直立與地面垂直。教師:這樣的例子很多,比如大橋橋柱與水面。正是因?yàn)樯钪杏性S多線與面垂直關(guān)系,所以,在幾何中有必要對(duì)線面垂直做進(jìn)一步研究。這堂課就來(lái)學(xué)習(xí)直線與平面垂直(板書(shū)出示課題)1.3教師丙的引入教師:前面我們研究了直線與平面平等的判定與性質(zhì),今天我們要研究直線與平面的其他位置關(guān)系。展示天安門(mén)廣場(chǎng)上的國(guó)旗及旗桿。這里先請(qǐng)大學(xué)看一幅圖片,天安門(mén)廣場(chǎng)的紅旗迎風(fēng)飄揚(yáng)。再看另一幅圖片,一橋飛架南北,天塹變通途。請(qǐng)大學(xué)回答下面問(wèn)題。問(wèn)題1:請(qǐng)同學(xué)們觀察圖片,說(shuō)出旗桿與地面、大橋橋柱與水面是什么位置關(guān)系?學(xué)生眾:垂直。教師:從數(shù)學(xué)的角度看,就是什么與什么的垂直。學(xué)生眾:線與面。教師:你還能舉出一些類似的例子嗎?想一想(教師同時(shí)出示課題)。學(xué)生1:音箱的邊緣與地面。學(xué)生2:立竿見(jiàn)影,竿與地面垂直。教師又展示跨欄與跳高架的圖片,說(shuō)明跨欄的支架與地面、跳高架立竿與地面是垂直關(guān)系。請(qǐng)大家將旗桿與地面這種位置關(guān)系畫(huà)出相應(yīng)的幾何圖形。學(xué)生畫(huà)圖,教師在圖板上畫(huà)出圖1。教師:為什么畫(huà)成這樣呢?這樣直觀性強(qiáng),將直線畫(huà)得與表示平面的平行四邊形的一邊垂直。教師:接著前面內(nèi)容的學(xué)習(xí),下面我們要學(xué)習(xí)直線與平面垂直的定義、判定與性質(zhì)。1.4不同引入方式的比較與思考應(yīng)當(dāng)說(shuō),三位教師的引入各有特色。教師甲在直線與平面位置關(guān)系的系統(tǒng)中,以“在這些相交關(guān)系中,你認(rèn)為哪種相交最特殊?”引出課題,并伴以學(xué)生的動(dòng)手操作、舉例、想象和語(yǔ)言敘述。這一設(shè)計(jì)的特點(diǎn)是:注意知識(shí)的系統(tǒng)與聯(lián)系;強(qiáng)調(diào)學(xué)生生活經(jīng)驗(yàn)的作用。這樣容易喚起在“直線與平面平行”的學(xué)習(xí)形成的經(jīng)驗(yàn),從而明確“研究什么”和“怎樣研究”,使學(xué)習(xí)的自覺(jué)性得到提高。教師乙利用一張生活圖片提出“是否想到在立體幾何中的什么與什么的關(guān)系”,由于“誘導(dǎo)”過(guò)分明顯,學(xué)生就不假思索地齊聲回答“線面垂直”。雖然有后面的師生分別舉例,但課題引入任務(wù)由這一句話已經(jīng)完成。雖然這一引入有單刀直入、開(kāi)門(mén)見(jiàn)山的特點(diǎn),但學(xué)生對(duì)看圖片的意圖、當(dāng)前學(xué)習(xí)內(nèi)容與已有知識(shí)與方法的聯(lián)系與借鑒等很難覺(jué)察到。另外,“線面垂直”的說(shuō)法不好,至少提出得太早。另外,甲、乙兩位教師用的“大漠孤煙直”的情境不能很好地反映當(dāng)前學(xué)習(xí)內(nèi)容的本質(zhì),不是一個(gè)好情境。教師丙的引導(dǎo)語(yǔ):“前面我們研究了直線與平面平行的判定與性質(zhì),今天我們要研究直線與平面的其他位置關(guān)系”以及圖,目的都是直指“要研究直線與平面垂直”。這樣引入也稍嫌太快,學(xué)生對(duì)于“要學(xué)什么”“為什么要學(xué)”和“如何學(xué)”等的感知都不充分,要學(xué)的內(nèi)容已有經(jīng)驗(yàn)的銜接不夠自然。良好的開(kāi)端是成功的一半,課題引入是課堂教學(xué)的重要一環(huán)。教學(xué)設(shè)計(jì)中,應(yīng)當(dāng)重點(diǎn)考慮:如何利用新舊知識(shí)的聯(lián)系與發(fā)展,以及學(xué)生相關(guān)的生活經(jīng)驗(yàn),創(chuàng)設(shè)問(wèn)題情境,以自然、親切地引出學(xué)習(xí)內(nèi)容;如果在課題引入中融入“學(xué)什么、為什么、怎么學(xué)”的成分。2定義的形成過(guò)程2.1教師甲的教學(xué)過(guò)程教師:怎樣給直線與平面垂直下定義呢?請(qǐng)同學(xué)們回憶直線與直線垂直是如何定義的?學(xué)生:直線與直線成90°,稱這兩條直線互相垂直。教師:兩條直線垂直可以分為兩條直線“相交垂直”和“異面垂直”。而“異面垂直”是轉(zhuǎn)化為“相交垂直”來(lái)研究的,實(shí)際上是把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題。按照這樣的思路能否將“線面垂直”的問(wèn)題轉(zhuǎn)化為“線線垂直”的問(wèn)題呢?請(qǐng)大家結(jié)合對(duì)下列問(wèn)題的思考給出直線與平面垂直的定義。(結(jié)合圖片)陽(yáng)光下,一條旗桿AB與它在地面上的影子BC所成的角是多少度呢?(圖2)學(xué)生眾:90°。教師:旗桿所在的直線與影子所在的直線相互垂直。那么,隨著太陽(yáng)的移動(dòng)影子也會(huì)發(fā)生移動(dòng),在這個(gè)過(guò)程中,旗桿所在的直線與影子所在的直線位置關(guān)系是否會(huì)發(fā)生變化?學(xué)生眾:不會(huì)。教師:那么,說(shuō)明旗桿AB所在的直線與地面上任意一條過(guò)點(diǎn)B的直線始終垂直。平面上不過(guò)點(diǎn)B的直線是否與旗桿AB也垂直呢?學(xué)生眾:垂直。教師:為什么?學(xué)生:把平移過(guò)去(經(jīng)過(guò)點(diǎn)B),存在一條過(guò)點(diǎn)B的影子與旗桿AB垂直。教師:很好。這說(shuō)明,地面上與不經(jīng)過(guò)點(diǎn)B的其他直線也是垂直的,也說(shuō)明,旗桿所在的直線與地面上任意一條直線都垂直。那么,你能用語(yǔ)言來(lái)概括直線與平面垂直的定義嗎?學(xué)生:如果一條直線與平面內(nèi)的任意一條直線都垂直,那么,我們就說(shuō)這條直線與平面是互相垂直。教師:很好。我們借用“線線垂直”來(lái)定義“線面垂直”。教師用幻燈片顯示直線與平面垂直的定義,要求學(xué)生用圖形語(yǔ)言、符號(hào)語(yǔ)言表示直線與平面垂直關(guān)系。2.2教師乙的教學(xué)過(guò)程教師:研究直線與平面垂直,我們首先要弄清:到底怎樣才算直線與平面垂直呢?(開(kāi)、閉教室的門(mén))問(wèn):“在門(mén)打開(kāi)的過(guò)程中,門(mén)軸與接近地面的這條邊保持什么關(guān)系?”學(xué)生眾:垂直。又通過(guò)教具說(shuō)明旗桿與地面上的影子保持垂直。門(mén)邊與下面的(不同位置的)邊緣、旗桿與(不同位置的)影子都是相交的。(借助教具)在平面內(nèi),有的直線與旗桿不相交,它和旗桿是否也是垂直關(guān)系?學(xué)生眾:是的。教師:為什么?我們可以將它平移到過(guò)旗桿的根部。這就為我們提供了線面垂直的定義。板書(shū)線面垂直的定義,給出畫(huà)法以及垂線、垂面、垂足的意義。2.3教師丙的教學(xué)過(guò)程教師:接下來(lái),我們要研究直線與平面垂直的定義、判定和性質(zhì)。首先我們看直線與平面垂直的定義。展示圖片,提出思考題:如果定義一條直線和一個(gè)平面垂直?在我們前面學(xué)習(xí)的“線面平行”的位置關(guān)系中,我們將“線面平行”關(guān)系轉(zhuǎn)化為“線線平行”這樣的位置關(guān)系考查,體現(xiàn)了“平面化”和“降維”的思維?,F(xiàn)在我們要研究直線與平面垂直,也可以將它轉(zhuǎn)化為直線與平面同的直線的位置關(guān)系問(wèn)題。下面來(lái)看問(wèn)題2(PPT顯示):(1)如圖2,陽(yáng)光下,觀察直立于地面的旗桿AB及它在地面上的影子BC,旗桿所在的直線與影子所在的直線有什么位置關(guān)系?(2)旗桿AB與地面上任意一條不過(guò)旗桿底部B的直線有什么位置關(guān)系?演示在不同時(shí)刻時(shí),旗桿所在直線與影子所在直線的位置關(guān)系。學(xué)生眾:垂直。教師:旗桿AB與地面上任意一條不過(guò)旗桿底部B的直線垂直,能說(shuō)說(shuō)理由嗎?學(xué)生:將直線平移到與AB相交。教師:這就體現(xiàn)了將兩條異面直線的問(wèn)題轉(zhuǎn)化為共面直線的問(wèn)題。直線是平面內(nèi)的任意一條,由此可以得到什么結(jié)論呢?學(xué)生:如果一條直線與平面垂直,那么這條直線與平面內(nèi)的任意一條直線都垂直。問(wèn)題3:通過(guò)上述觀察分析,你認(rèn)為應(yīng)該如何定義直線與平面垂直?學(xué)生:如果直線與平面內(nèi)的任意一條直線都垂直,那么直線垂直于平面。教師:板書(shū)直線與平面垂直的定義,并辨析“任意一條”是否可以換成“無(wú)數(shù)條”。2.4不同教學(xué)過(guò)程的比較與思考本環(huán)節(jié)涉及如下幾個(gè)問(wèn)題:定義的教學(xué)時(shí)間、典型實(shí)例的使用特別是提出什么問(wèn)題、概括定義的過(guò)程中師生活動(dòng)的安排、數(shù)學(xué)思想方法的滲透、定義辨析活動(dòng)的內(nèi)容和過(guò)程等。2.4.1關(guān)于定義的得出過(guò)程教師甲注意利用學(xué)生已有的知識(shí)基礎(chǔ)、生活經(jīng)驗(yàn),并注意研究方法的引導(dǎo)。把“異面直線垂直”轉(zhuǎn)化為“相交直線垂直”是可以借鑒的經(jīng)驗(yàn),教師通過(guò)提示,不僅引導(dǎo)了思考方向,而且也滲透了類比、化歸、降維等數(shù)學(xué)思維方法。怎樣的“線線垂直”可以導(dǎo)致“線面垂直”?教師構(gòu)建了“旗桿與變動(dòng)的影子的關(guān)系”的情境,在學(xué)生得出“旗桿與變動(dòng)的影子都垂直”之后,提問(wèn)“地面上不是影子的直線是否與旗桿也垂直”?學(xué)生由“異面直線垂直”轉(zhuǎn)化為“相交直線垂直”的經(jīng)驗(yàn),采用平移的方法(空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的最常用方法),得出“也垂直”的結(jié)論。在充分認(rèn)知“旗桿和地面上任意一條直線都垂直”之后,再給直線與平面垂直下定義就比較自然了。這一過(guò)程既是學(xué)生對(duì)定義的充分感知過(guò)程,也是體會(huì)定義合理性的過(guò)程。在教師甲的教學(xué)中,一開(kāi)始讓學(xué)生回憶直線與直線垂直的定義是一個(gè)不恰當(dāng)?shù)沫h(huán)節(jié),因?yàn)樗菀装褜W(xué)生的思路引到“當(dāng)直線與平面成90°時(shí),直線與平面垂直”。雖然可以再追問(wèn)“如何刻畫(huà)直線與平面成90°”,但這是一個(gè)學(xué)生“夠不著”的問(wèn)題。所以,直接讓學(xué)生回憶直線與直線垂直的研究方法更好,因?yàn)樗桥c本節(jié)內(nèi)容直接相關(guān)的知識(shí)“生長(zhǎng)點(diǎn)”。教師丙也注意到思想方法的引導(dǎo)?;仡櫋熬€面平行”位置關(guān)系研究中曾將“線面平行”關(guān)系轉(zhuǎn)化為“線線平行”,體現(xiàn)了“平面化”和“降維”的思想,并指出“要研究直線與平面垂直,也可以轉(zhuǎn)化為直線與平面內(nèi)的直線垂直的問(wèn)題。”然后也利用了“旗桿與影子的關(guān)系”這一情境,引導(dǎo)學(xué)生感知直線與平面垂直的特征,并讓學(xué)生自己下定義。教師乙的過(guò)程比較簡(jiǎn)單。由教師自己舉出直線與平面垂直的實(shí)際事例(“門(mén)軸問(wèn)題”與“旗桿問(wèn)題”),由教師自己指明可以將其他直線平移到過(guò)旗桿底部的位置。因?yàn)椴捎昧恕案嬖V”的方法進(jìn)行定義教學(xué),因此很快(約3分鐘)完成直線與平面垂直的定義。顯然,這樣的教學(xué)大大壓縮了定義的形成過(guò)程,定義過(guò)程中體現(xiàn)的數(shù)學(xué)思想方法沒(méi)有得到挖掘,學(xué)生的生活經(jīng)驗(yàn)、已有知識(shí)的作用都沒(méi)有得到充分發(fā)揮,概念的概括過(guò)程不充分,知識(shí)之間的聯(lián)系性也建立的不牢固。特別是,學(xué)生的思維停留在模仿、機(jī)械記憶的層次上,自主性得不到發(fā)揮。實(shí)際上,教師在提出“到底怎樣才算直線與平面垂直呢?”以后,應(yīng)該讓學(xué)生談?wù)勛约簩?duì)“直線與平面垂直”的直觀感受,通過(guò)例子說(shuō)明直線與平面垂直的內(nèi)涵,讓他們參與到概念的概括過(guò)程中來(lái)。與其他兩位教師比較,教師乙在引導(dǎo)學(xué)生感知直線與平面垂直關(guān)系特征時(shí)所用的時(shí)間較少。這一現(xiàn)象有代表性,即當(dāng)前的數(shù)學(xué)課堂中,教師不舍得在概念、定義的發(fā)生發(fā)展過(guò)程上花時(shí)間,認(rèn)為這樣“太虛”,不如讓學(xué)生多做幾道題目實(shí)在。因而概念教學(xué)常常用“一個(gè)定義三項(xiàng)注意”的方式,告訴學(xué)生定義的內(nèi)容,強(qiáng)調(diào)幾個(gè)注意事項(xiàng)(例如,這里強(qiáng)調(diào)“要注意,必須是‘任意’的”),然后就講例題、做練習(xí)。實(shí)踐表明,這樣的教學(xué)是得不償失的,對(duì)學(xué)生把握和應(yīng)用概念都產(chǎn)生了不利影響,因?yàn)樵趯W(xué)生沒(méi)有基本把握概念內(nèi)涵的時(shí)候就要求學(xué)生用概念解決問(wèn)題,結(jié)果只能是機(jī)械模仿,不可能有理想的解題質(zhì)量和效率。2.4.2關(guān)于定義的辨析過(guò)程在討論定義的過(guò)程中,教科書(shū)安排了一個(gè)“思考:一條直線與一個(gè)平面垂直的意義是什么?”并在“邊空”提出“如果一條直線垂直于一個(gè)平面內(nèi)的無(wú)數(shù)條直線,那么這條直線是否垂直于這個(gè)平面?”其目的是用以辨析直線與平面垂直的內(nèi)涵,使學(xué)生形成正確的直線與平面垂直的概念。幾位教師對(duì)這一問(wèn)題的處理不盡相同。定義形成后,教師甲提問(wèn):定義中的“任意一條”能否用“無(wú)數(shù)條”替換?這個(gè)問(wèn)題接連幾個(gè)學(xué)生都不能回答。教師提示可以舉反例,學(xué)生也未能舉出。這說(shuō)明學(xué)生對(duì)定義的內(nèi)涵仍沒(méi)有完全把握,定義形成的過(guò)程并不夠完善。教師乙在直線與平面垂直的判定定理出現(xiàn)之后作為練習(xí)提出:我們知道,一條直線與平面垂直,則這條直線與平面內(nèi)的任意一條直線都垂直。那么,如果一條直線與平面不垂直,是不是這條直線與平面內(nèi)的直線都不垂直?教師丙放在定義形成之后,辨析“任意一條”與“無(wú)數(shù)條”問(wèn)題,從而引入一條直線與平面垂直需要怎樣的兩條,為判定定理的引出服務(wù)。雖然定義的理解需要一個(gè)過(guò)程,在后續(xù)學(xué)生中應(yīng)當(dāng)安排回顧、辨析的機(jī)會(huì),但是定義的教學(xué)必須安排辨析過(guò)程。所以,教師乙的定義教學(xué)過(guò)程是不全面的。另外,幾位教師安排的辨析過(guò)程都不充分。2.4.3總體分析從上述教學(xué)過(guò)程可以看到,利用典型事例引導(dǎo)學(xué)生直觀感知直線與平面垂直的特征,然后概括得出定義,再對(duì)定義進(jìn)行辨析,是教學(xué)的基本環(huán)節(jié)。其中,教師的教學(xué)行為對(duì)學(xué)生把握概念的內(nèi)涵有關(guān)鍵性影響。這里具體表現(xiàn)在兩方面:第一,例子由誰(shuí)來(lái)舉。我們看到,三位教師都自己先舉例。實(shí)際上,如果先讓學(xué)生舉例,并說(shuō)說(shuō)自己理解的“直線與平面垂直的含義”,然后教師查漏補(bǔ)缺,引導(dǎo)學(xué)生概括出概念,這樣做的話,學(xué)生不僅有充分的直觀感知活動(dòng),而且還有合情推理、邏輯思維的機(jī)會(huì),學(xué)生對(duì)概念本質(zhì)的把握自然就更深刻了。我們常常聽(tīng)到教師抱怨“直觀感知、操作確認(rèn)”的幾何課不好上,學(xué)生的活動(dòng)難安排,削弱了邏輯思維,但從上面的討論可以看到,關(guān)鍵還是教師的教學(xué)行為是否恰當(dāng)。第二,定義的辨析如何安排。中學(xué)數(shù)學(xué)中的定義一般都是“充分必要條件”,對(duì)定義的辨析,一方面是對(duì)“關(guān)鍵詞”的辨析,也就是對(duì)內(nèi)涵的理解,例如能否把“任意”換成“無(wú)數(shù)”;另一方面就是從“充分必要條件”進(jìn)行辨析,這里要設(shè)法讓學(xué)生關(guān)注“如果一條直線與一個(gè)平面垂直,那么它與平面內(nèi)的所有(或任意一條)直線是否都垂直?”和“如果直線與平面內(nèi)的所有(任意一條)直線垂直,能斷定這條直線與平面垂直嗎?”顯然,三位教師在教學(xué)設(shè)計(jì)中,只關(guān)注了前一方面,因此對(duì)定義的辨析不全面。3“判定定理”的教學(xué)“課標(biāo)”要求“通過(guò)直觀感知、操作確認(rèn),歸納出直線與平面垂直的判定定理”。為此,教科書(shū)安排了“探究;請(qǐng)同學(xué)們用一塊三角形紙板做實(shí)驗(yàn);如圖3,過(guò)的定點(diǎn)翻折紙片,得到折痕,將翻折的紙片豎直的放置在桌面上(、與桌面接觸)。(1)折痕與桌面垂直嗎?(2)如何翻折才能使得折痕與桌面所在的平面垂直?”圖4圖4圖3圖3經(jīng)過(guò)實(shí)驗(yàn)學(xué)生會(huì)明白,問(wèn)題(1)的答案是“不一定”;也正是因?yàn)椤安灰欢ā?,所以要回答?wèn)題(2)“如何翻折”,這正是判定直線與平面垂直的條件。接著,教科書(shū)又設(shè)置了“思考:(1)有人說(shuō),折痕所在的直線與桌面所在的平面上的一條直線垂直,就可以判斷垂直,你同意他的說(shuō)法嗎?(2)如圖4,由折痕,翻折之后垂直關(guān)系不變,即,由此你能得到什么結(jié)論?”這個(gè)活動(dòng)的安排也體現(xiàn)了學(xué)生在操作中辨析、思考折紙過(guò)程的教學(xué)本質(zhì),操作結(jié)果體現(xiàn)的幾何要素(線、面)的相互關(guān)系。因此,“操作確認(rèn)”中不僅有合情推理的要求,也有邏輯推理的要求,教學(xué)活動(dòng)思維更全面了。三位教師對(duì)“實(shí)驗(yàn)”“思考”有不同的處理。3.1教師甲的處理教師:“定義”通??梢宰鳛榕卸ǖ囊罁?jù)。如果用“定義”判定直線是否與平面垂直,你們說(shuō)方便不方便?學(xué)生眾:不方便。教師;不方便在哪里?學(xué)生眾:任意一條(難窮盡)。教師:要檢驗(yàn)一條直線與平面內(nèi)每一條直線都垂直很難做到,所以,我們有必要尋找更為簡(jiǎn)便可行的方法來(lái)判定直線是否與平面垂直。于是,就想到要減少直線的條數(shù),最理想的是減少到一條。“一條直線與平面內(nèi)的一條直線垂直,這條直線就與這個(gè)平面垂直”可以嗎?學(xué)生眾:不可以。教師:可以減少到幾條呢?學(xué)生眾:兩條。教師:(仍注意從思考方法上引導(dǎo))請(qǐng)大家拿出三角形紙片,我們來(lái)做實(shí)驗(yàn)。(教師邊演示邊說(shuō)明如何做實(shí)驗(yàn))任意翻折得到一條折痕,然后把紙片豎立放在桌面上,下面的兩條邊緊貼桌面,觀察折痕是否與桌面垂直?學(xué)生活動(dòng),教師巡視。學(xué)生:不垂直。教師:為什么你認(rèn)為這條折痕與桌面不存在呢?學(xué)生:這條直線與桌面所成的角不是。(涉及未定義的“直線與平面所成角”的概念,教師引導(dǎo)不當(dāng),使學(xué)生的觀察指向不明,說(shuō)明實(shí)驗(yàn)的目的——要解決什么問(wèn)題不太明確)教師:(替學(xué)生解釋)他的意思是這條折痕與這條直線()不成。因?yàn)橹本€與平面垂直意味著這條直線與平面內(nèi)的任意一條直線都垂直。那么怎樣翻折才能使這條折痕與桌面垂直?學(xué)生繼續(xù)活動(dòng)。教師巡視,看到一名學(xué)生以上的高度為折痕,拿過(guò)來(lái)展示,并幫助解釋,這是使折痕后下面的兩邊重合(圖5);看到另一名學(xué)生以圖6的方式翻折,也拿過(guò)來(lái)展示,并幫助學(xué)生解釋,折痕與垂直。(這里,教師給出的折法的解釋是不當(dāng)?shù)?,?yīng)當(dāng)讓學(xué)生自己解釋)圖6圖5圖6圖5教師:你認(rèn)為,使折痕與桌面所在的平面垂直的關(guān)鍵因素或這兩種折法共同特征是什么?學(xué)生:,。教師:你認(rèn)為它們是垂直的?學(xué)生:下面兩條邊(指、)重合。教師:“重合”為什么就說(shuō)明直線,呢?學(xué)生:的一半是。教師:我們?nèi)绻颜酆鄢橄蟪梢粭l直線,把下面的兩條直線,那么,你認(rèn)為直線與平面垂直的條件是什么?學(xué)生:一條直線如果與平面內(nèi)的兩條相交直線都垂直,那么這條直線與這個(gè)平面垂直(圖7)。圖8圖7圖8圖7教師:(展示圖8)直線不經(jīng)過(guò)直線、的交點(diǎn),但是仍然保證、,是否也有?學(xué)生用“可以平移”說(shuō)明結(jié)論成立。教師:只要保持與平面內(nèi)的兩條相交直線垂直就可以了,至于是否與這兩條直線有公共點(diǎn)沒(méi)有關(guān)系。你能給出直線與平面垂直的判定定理嗎?學(xué)生:一條直線與平面內(nèi)的兩條相交直線垂直,那么這條直線與這個(gè)平面垂直。教師板書(shū)判定定理,說(shuō)明判定定理只要求平面內(nèi)有兩條相交直線與該平面垂直即可,比定義要方便得多。點(diǎn)出關(guān)鍵之處:線不在多,相交就行:。指出用定義判定直線和平面垂直與用判定定理判定直線和平面垂直的共同點(diǎn)都是由“線線垂直”得到“線面垂直”,這是空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的思想方法。3.2教師乙的處理教師:我們要考查一條直線與一個(gè)平面就要考查這條直線與平面內(nèi)的直線是否都垂直,但是平面內(nèi)的直線有無(wú)數(shù)條,我們不可能對(duì)無(wú)窮多條的直線是否與這條直線垂直做一一驗(yàn)證,怎么辦?學(xué)生:任意取一條。教師:同學(xué)們看,這條直線不與平面垂直吧(教師用教具演示,表示平面的一條斜線),但我在這個(gè)平面內(nèi)任意取一條直線,與這條直線(平面的斜線)垂直,這條直線與平面并不垂直。因?yàn)榍懊鎸W(xué)習(xí)過(guò)的直線與平面平行的判定,平面外的一條直線只要與平面內(nèi)的一條直線平行,那么這條直線就與平面平行,因此,這名同學(xué)的想法可能受這個(gè)定理的影響。一條直線不行,我們來(lái)考慮兩條。如果平面內(nèi)的兩條直線是平行的,都與這條直線垂直,還是不能保證這條直線與平面垂直吧,那么我們就考慮兩條相交的直線。我這里有一個(gè)三角形的紙片,這樣折一下(折痕不垂直于底邊),然后把折后的紙片放在桌面上,這條折痕與平面是什么關(guān)系?垂直嗎?學(xué)生眾:不垂直。教師:你有沒(méi)有辦法將三角形紙片折一下,使折后放在桌面上折痕與桌面垂直呢?同學(xué)們?cè)囼?yàn)一下。學(xué)生活動(dòng),教師巡視。提問(wèn)一學(xué)生:“你是怎么折的?”學(xué)生:作一條高線,沿著高線折(圖9)。教師:這就為我們判定直線與平面垂直提供了依據(jù)。由于高線AD與邊BC垂直,翻折后折痕AD仍然與底邊所分成的兩部分DB、DC保持垂直,同時(shí)AD與BD、DC都相交,BD與DC也相交。如果BD與DC是相交的,另外一條直線與它們不是相交的,能不能保證這條直線與平面垂直?學(xué)生眾:能。教師:可以把它們平移成為前一種情形。這就為我們判定直線與平面垂直提供了一個(gè)依據(jù)。板書(shū)直線與平面垂直的判定定理。3.3教師丙的處理教師:我們?nèi)绾螜z驗(yàn)學(xué)校廣場(chǎng)上的旗桿是否與地面垂直?(展示操場(chǎng)上旗桿的圖片)學(xué)生:用定義。教師:用定義,我們就要判斷旗桿是否與地面上的任意一條直線都垂直,能做到嗎?學(xué)生:不能。教師:為什么不能?學(xué)生:直線的條數(shù)是無(wú)限的。教師:但人的生命是有限的。我們現(xiàn)在不能用定義來(lái)解決這個(gè)問(wèn)題,就要尋找新的辦法。首先要解決這個(gè)“無(wú)限”的問(wèn)題,就是要轉(zhuǎn)化為“有限”。有限的情況至少是幾條?學(xué)生眾:兩條。教師:兩條就行嗎?學(xué)生眾:要相交。教師:平行不行。下面考查相交的情形。(展示跨欄及跳高架圖片)問(wèn):觀察跨欄、簡(jiǎn)易木架等實(shí)物,你認(rèn)為其豎桿能豎直于地面的原因是什么?由此你能得出判斷一條直線與一個(gè)平面垂直的方法嗎?學(xué)生:因?yàn)榭鐧诘闹еc地面上的兩條直線垂直。教師:制作跨欄時(shí),支柱與放在地面上的兩條橫邊都是垂直的。你能由此得到判斷直線與平面垂直的方法嗎?學(xué)生:如果一條直線與平面內(nèi)的兩條相交直線都垂直,那么這條直線與這個(gè)平面垂直。教師:(板書(shū)定理)定理中特別要注意的地方在哪里?學(xué)生:兩條,相交。教師:直線與平面上的直線不相交呢?學(xué)生:平移。3.4不同處理方法的比較與思考教師甲的教學(xué)過(guò)程可以概括為:感受用定義作判斷不方便,引起探索判定定理的需要——討論平面內(nèi)的直線減到多少條才合適——折紙實(shí)驗(yàn)——討論不同折法的共同特點(diǎn)——變式(任意兩條相交直線)——獲得判定定理——辨析定理。教學(xué)過(guò)程設(shè)計(jì)比較合理,體現(xiàn)了“直觀感知,操作確認(rèn)”的認(rèn)知過(guò)程。比較遺憾的是:第一,折紙活動(dòng)中對(duì)操作、觀察的目的強(qiáng)調(diào)不夠,沒(méi)有明確提出“折紙結(jié)果所反映的數(shù)學(xué)本質(zhì)是什么”的思考任務(wù),因此“感知”“確認(rèn)”不充分,直接影響了活動(dòng)的數(shù)學(xué)思維層次;第二,沒(méi)有給學(xué)生自己解釋折紙方法的理由和自主辨析定理的機(jī)會(huì),采取了代替學(xué)生說(shuō)明理由、“告訴”學(xué)生注意事項(xiàng)的做法,這也損害了推理能力(包括邏輯推理能力)的培養(yǎng)。教師乙的教學(xué)設(shè)計(jì)也有“引起探索判定定理的需要——折紙活動(dòng)——得出定理”的過(guò)程,但在教學(xué)時(shí)基本采取了“我講你聽(tīng)”的方式,特別是在學(xué)生提出“作一條高線,沿著高線折”時(shí),沒(méi)有要求學(xué)生概括這樣做的本質(zhì),而是教師自己提出“這就為我們判定直線與平面垂直提供了依據(jù)……”從而使折紙活動(dòng)的意義大打折扣。我們認(rèn)為,這是對(duì)教科書(shū)設(shè)置“探究”的意義未能充分理解的表現(xiàn),結(jié)果是學(xué)生的活動(dòng)不充分,“直觀感知,操作確認(rèn)”未落實(shí),教學(xué)目標(biāo)的達(dá)成度也就較低了。教師丙沒(méi)有采納教科書(shū)設(shè)置的“探究”活動(dòng),變“直面感知,操作確認(rèn)”為觀察教師提供的圖片,并經(jīng)過(guò)教師講解而“觀察確認(rèn)”,因此很快得出判定定理。在給出判定定理后,教師安排學(xué)生折紙,這就使“折紙活動(dòng)”成為驗(yàn)證判定定理的過(guò)程。由于沒(méi)有“操作”這一環(huán)節(jié),因此學(xué)生對(duì)定理的感知很不充分,對(duì)判定定理的必要體驗(yàn)沒(méi)有建立起來(lái)。另外,“操作確認(rèn)”得出的結(jié)論作為定理是需要證明的。在得到判定定理后,教師應(yīng)當(dāng)說(shuō)明“這個(gè)定理需要證明!在后續(xù)的學(xué)習(xí)中會(huì)給出證明?!笨傊?,在三位教師的教學(xué)設(shè)計(jì)中,對(duì)判定定理的“直觀感知,操作確認(rèn)”都是有安排的。但是由于課堂中沒(méi)有讓學(xué)生充分展開(kāi)思維活動(dòng),特別是沒(méi)有充分挖掘“折紙”活動(dòng)的數(shù)學(xué)內(nèi)涵,沒(méi)有明確折紙的目的、“觀察”的角度、“確認(rèn)”的途徑等,導(dǎo)致學(xué)生缺乏從折紙結(jié)果概括判定定理的思維過(guò)程,因此極大降低了本節(jié)課的數(shù)學(xué)思維水平。4課本例2的教學(xué)教科書(shū)在得出判定定理后,安排了例2:如圖10,已知∥,⊥,求證⊥。這是判定定理的一個(gè)典型應(yīng)用題,以往教科書(shū)把它處理成一個(gè)定理。4.1教師甲的教學(xué)教師:怎樣證明它?證明垂直于平面只要怎么樣?(這樣的問(wèn)題指向是非常不明確的)學(xué)生:在平面內(nèi)畫(huà)兩條相交直線,證明直線與它們垂直就行。教師與該生邊議論邊板書(shū)證明過(guò)程。教師:能否用定義來(lái)證明呢?只要畫(huà)一條,但必須說(shuō)明這是平面內(nèi)的任意一條。4.2教師乙的教學(xué)教師出示例2,自己讀題目,很快(22秒鐘以后)提問(wèn)一學(xué)生。這名學(xué)生正確地解答了問(wèn)題(在平面內(nèi)畫(huà)出兩條相交直線、)。教師:很好。如果證明直線⊥?根據(jù)判定定理,只要在平面內(nèi)找兩條相交直線;如果根據(jù)定義的話,找平面內(nèi)任意一條直線都與直線超重……教師給學(xué)生講解、分析,板書(shū)解答,學(xué)生觀看。4.3教師丙的教學(xué)教師先讓學(xué)生板演“求證:與三角形的兩條邊同時(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 刺繡機(jī)器轉(zhuǎn)讓合同范例
- 勞動(dòng)法居間合同范例
- 個(gè)月支付 合同范例
- 關(guān)于建筑消防合同范例
- 個(gè)人租房簽合同范例
- 個(gè)人修建酒店合同范本
- 一房?jī)少u(mài)房子合同范例
- 中介提成合同范例
- 公司內(nèi)包合同范例
- 借款合同范本有合同編號(hào)
- 煙葉復(fù)烤能源管理
- 食品安全管理員考試題庫(kù)298題(含標(biāo)準(zhǔn)答案)
- 執(zhí)業(yè)醫(yī)師資格考試《臨床執(zhí)業(yè)醫(yī)師》 考前 押題試卷絕密1 答案
- 2024年山東濟(jì)寧初中學(xué)業(yè)水平考試地理試卷真題(含答案詳解)
- 社會(huì)保險(xiǎn)課件教學(xué)課件
- 訂婚協(xié)議書(shū)手寫(xiě)模板攻略
- 準(zhǔn)備單元 雪地上的“足跡”(教學(xué)設(shè)計(jì))-2023-2024學(xué)年五年級(jí)下冊(cè)科學(xué)大象版
- 宇航用商業(yè)現(xiàn)貨(COTS)器件保證指南-編制說(shuō)明
- 音樂(lè)學(xué)科閱讀方案
- 《立體倉(cāng)庫(kù)鋼結(jié)構(gòu)貨架技術(shù)規(guī)范(征求意見(jiàn)稿)》
- 2024年貴州蔬菜集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
評(píng)論
0/150
提交評(píng)論