鐵鑄鐵精礦中charceralgebras_第1頁(yè)
鐵鑄鐵精礦中charceralgebras_第2頁(yè)
鐵鑄鐵精礦中charceralgebras_第3頁(yè)
鐵鑄鐵精礦中charceralgebras_第4頁(yè)
鐵鑄鐵精礦中charceralgebras_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

鐵鑄鐵精礦中charceralgebras

經(jīng)典的馬修-烏爾姆-烏爾姆,以sur組件可接近體,以避免供應(yīng)不足。就連線程序的結(jié)構(gòu)也很簡(jiǎn)單。時(shí)間是推移的,但也可以看到,這是一個(gè)緩慢的步驟。Whethercanwecharacterizeisometriesonmetricalgebraswhentheypreserveasfewaspos-siblealgebraicstructure?Tocharacterizeisometriesonmetricalgebras,howabouttherelationsamongalgebraicstructuresofmetricalgebras?Thus,inthispaper,westudymultiplicativeandapproximativemultiplicativeisometriesonsequencespaceslp(p>0)and(),respectively.Firstly,weintroducethebasicnotation.Let0<βn<1forallintegersn.Pelczynskiinfirstlydefinedthespace():Thespace()consistsofallsequencesx=(ξn)ofrealnumbersforwhichisfinite.Thesupportofx=(ξn)∈()istheset{i∈N;ξi≠0},denotedbysuppx.Theelementsxandyarecalleddisjointiftheyhavedisjointsupports.LetXbeametricspaceandabeapositivenumber,putSa(X):={x∈X;‖x‖=a}.1出口條件最適要求2.3index,n.n.et......方法,訴訟形式........................................................Proposition2.f.14incharacterizesthelinearisometriesofc0orlp(1≤p≤+∞,p≠2)ontoitself.Wecandirectlygeneralizethisresulttometriclinearspaceslp(1>p>0).Underaweakercondition,wenowgivethecharacterizationsofisometrieswhichpreserveonealgebraicstructure(i.e.multiplicativestructure)onsomesequencespaces.LetG1andG2betwosetswithmultiplicativestructure.Amappingφ:G1→G2ismultiplicativeifitsatisfiestheequationφ(x·y)=φ(x)·φ(y)forallx,y∈G1withx·y∈G1.ToproveTheorem2.1,weneedthefollowinglemma.LemmaLet0<β<1andξ,ηbetworealnumbers.Thentheequalityholdsifandonlyifξη=0.Theorem1.1Let0<βn<1forallintegersnandV0:beanintoisometry.IfV0(x·y)=V0(x)·V0(y)foranyx,y∈S1(())withx·y∈S1(()),thenV0canbelinearlyextendedtothewholespace().ProofTakeanytwodisjointelementsx,y∈S1(()).LetV0(x)=∑ζnenandV0(y)=∑ηnen.SinceV0isanisometryandbytheinequalityin[1,Lemma],wehaveSoBy[1,Lemma],ζnηn=0foralln∈N.Hence,wegetFromtheassumptionthatforanyi∈Nandλ∈Rwith|λ|=1,wehaveandHence,SetV0(ei)=ΣξieiandV0(-ei)=Σηiei.Then,foranyi∈Nfromandweget.Ifmi∈suppV0(ei),thensincesuppV0(ei)=suppV0(λei),and.Further-more,wegetsuppV0(ei)isthesinglepointset{mi},and.So,wecandefineaninjectivemappingp:N→Nbyp(n)=m,wheretheintegersmandnsatisfytherelationV0(en)=em.SinceV0isanisometrybetweenS1()andfromthedefinitionofp,itiseasytoverifythatβn=βp(n)(n∈N).Takeanyx=∑ξnen∈S1(().PutV0(x)=Σηnen.DenoteR(p)tobetherangeofthemappingp.Wecanprovethatξn=ηp(n),foranyn∈N.Ifξn=0,thensuppen∩suppx=0.Bytheabove,weget,suppV0(en)∩suppV0(x)=.Thatis,ηp(n)=0.Ifξn≠0,set,thenwegetSinceV0isisometricandβn=βp(n),wehaveSince|ξn|≤1,|ηp(n)|≤1andthefactthat|1-|α‖β-|α|β(0<β,|α|≤1)isdecreasing,From,weget|ξn|=|ηp(n)|.Supposingξn=-ηp(n),thenbytheabovecomputing,wegetwhichisacontradiction.Soξn=ηp(n),ifξn≠0.Hence,,foralln∈N.whereπ=p-1:R(p)→N.Therefore,fromtheformofV0,itiseasytoshowthatV0canlinearlyisometricallyextendedtothewholespace().Remark1.2LetΓbeanindexset,0<β<1and0<βγ<1,γ∈Γ.ThentheresultinTheorem1.1istruefor(Γ)andlβ(Γ)typesspaces,respectively.2xxxxxy保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證保證Thereareconceptswhichpivotoncertainequalities.Sometimesitmaybegiveusdeeperunderstandingofamathematicalsituationtogeneralizesuchequalitytomerelyapproximateequality.So,werecallapproximativemultiplicativeisometry,definedin,whichisasfollows:LetG(·,ρ)beametricgroupandabeapositivenumber.Amappingφ:G→Giscalledδ-multiplicativeifitsatisfiestheinequalitvTheorem1LetSbeasemigroup,Abeanormedalgebrawithmultiplicativenormandδ>0.Iffunctionφ:S→AsuchthatPut.Theneither‖φ(x)‖<βforallxinSorφ(xy)=φ(x)φ(y)forallx,yinS.LetXbeametriclinearspace.Asusual,set<x,x*>=x*(x),ifx∈Xandx*∈X*.Weshallcharacterizetheδ-multiplicativeisometryonthealgebralp(p>0).Theorem2.1LetV:lp→lpbeaδ-mmultiplicativeisometrywithV(0)=0andSa(lp)V(lp)forsomepositivenumbera<1.Thenthereexistsamappingπ:∪suppV(en)→N,sothat,foranyelementx=∑ξiei∈lp,ProofSetx=∑eiei,y=Σηiei,x·y=∑ζieiand,.Then.SinceVisδ-multiplicative,Thenforanyi∈N,Defineφi(x)=<V(x),ei>(i∈N).Byinequality(2.1),foranyintegeri,φi:lp→Risaδ-multiplicativemapping.Weshallprovethatforeveryi∈N,φiisunbounded.Otherwise,assumethatφiisboundedforsomeintegeri.Sincea<1andSa(lp)V(lp),thereisx∈lpsuchthatV(x)=aei.Sinceφiisbounded,wecanputy∈lpsuchthat‖x·y‖≥δ+|φi(y)|.ThenwehavewhichcontradictstotheassumptionthatVisδ-multiplicative.Soby[6,Theorem1],foranyintegeri,φiismultiplicative.So,Visamultiplicativeisometryonlp.Foranyxandyinlp,ifsuppx∩suppy=,thenx·y=0.SinceV(0)=0,V(x)·V(y)=V(0)=0andsuppV(x)∩suppV(y)=.SincewehaveprovedthatVismultiplicative,wecanverifythatforanyintegeri,suppV(ei)isasinglepointsetandV(-ei)=-V(ei).Now,wedefineamappingT:N→NbyT(n)=m,wheretheintegersmandnsatisfytherelationV(en)=em.FromV(0)=0,wegetV(S1(lp))S1(lP).Takeanyx=∑ξnen∈S1(lp),andput.SimilarastheproofofTheorem1.1,weget,foralli∈UsuppV(en).Letπ=T-1:UsuppV(en)→N.Wegetourconclusion.Corollary2.2LetV:lp→lp(p>0,p≠2)beanisometrywithV(0)=0andS

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論