人教版五年級下冊數(shù)學(xué)第三單元知識點匯總_第1頁
人教版五年級下冊數(shù)學(xué)第三單元知識點匯總_第2頁
人教版五年級下冊數(shù)學(xué)第三單元知識點匯總_第3頁
人教版五年級下冊數(shù)學(xué)第三單元知識點匯總_第4頁
人教版五年級下冊數(shù)學(xué)第三單元知識點匯總_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

./五年級下冊數(shù)學(xué)第三單元知識點匯總一、長方體和正方體的認(rèn)識[知識點1]要素立體圖形棱面頂點數(shù)量特征數(shù)量特征數(shù)量特征長方體12互相平行的棱長度相等6相對的面完全相同8同一個頂點引出的三條棱分別叫做長、寬、高特殊長方體12垂直于正方形面的棱長度相等6兩個面是正方形,其余四個面是完全相同的長方形8正方體12所有的棱長度都相等6所有面都是正方形且完全相同8一個長方體至少可以有兩個面是正方形,最多可以有6各面是正方形,但不會存在3個、4個、5個面是正方形![知識點2]棱長和公式:長方體棱長和=〔長+寬+高×4長+寬+高=棱長和÷4正方體棱長和=棱長×12棱長=棱長和÷12棱長和的變形:例如:有一個禮盒需要用彩帶捆扎,捆扎效果如圖,打結(jié)部分需要10厘米彩帶,一共需要多長的彩帶?30㎝20cm20cm30㎝20cm20cm分析:本題雖然并未直接提出求棱長和,但由于彩帶的捆扎是和棱相互平行的,因此,在解決問題時首先確定每部分彩帶與那條棱平行,從而間接去求棱長和。前面和后面的彩帶長度=高的長度;左面和右面的彩帶長度=高的長度;上面和下面的彩帶長度=長的長度。需要彩帶的長度=高×4+長×2+打結(jié)部分長度20×4+30×2+10=150cm[知識點3]確定長方體中每個面的形狀以及長、寬、高分別是多少。長方體一共有6個面,相對面完全相同,如:前面和后面完全相同,左面和右面完全相同,上面和下面完全相同。練習(xí):經(jīng)過折疊可以組合成正方體:經(jīng)過折疊可以組合成長方體:[知識點5]長方體或正方體的切割組合對棱長的影響〔1切割將長方體橫向切割成兩個長方體后,棱長將比原來一個長方體時增加4條長和4條寬;〔棱長增加的最長將長方體豎向切割成兩個長方體后,棱長將比原來一個長方體時增加4條寬和4條高;〔棱長增加的最短將正方體沿?zé)o論沿那個方向切割成兩個長方體后,棱長將比原來增加4條棱。組合將兩個完全相同的長方體沿上下面組合后,棱長比原來兩個長方體時減少4條長和4條寬;〔棱長減少的最多例如:將五個完全相同的正方體組合成一個長方體后,棱長和為140厘米,原來每個正方體的棱長和是多少?分析:五個正方體棱長共有12×5=60條;將五個完全相同正方體組合后棱長比原來減少32條,還剩60-32=28條;即這28條棱的長度和即為新長方體的棱長和,所以正方體一條棱的長度為:140÷28=5cm;所以一個正方體的棱長和為:5×12=60cm。[知識點6]小正方體拼大正方體的規(guī)律由于正方體,每條棱的長度相等,所以要用小的正方體拼出大的正方體每條棱上擺放的小正方的個數(shù)應(yīng)該是相等的,因此要拼出最小的正方體至少需要2×2×2=23=8個〔也就是說每條棱上放2個小正方體,接著再往大了拼正方體,就是每條棱上放3個小正方體即3×3×3=33=27個,依次類推接下來是4×4×4=43=64個;5×5×5=53=125個……從中我們可以發(fā)現(xiàn)要用小的正方體拼出大的正方體所需要的小正方體的個數(shù)應(yīng)該是一個數(shù)的立方。這就要求我們能夠熟記一些數(shù)的立方:23=833=2743=6453=12563=21673=34383=51293=729103=1000[知識點1]長方體表面積=〔長×寬+長×高+寬×高×2=〔a×b+a×c+b×c×2=〔前面面積+上面面積+右面面積×2正方體表面積=棱長×棱長×6=a×a×6=6a2兩個棱長和相等的長方體或一個長方體和一個正方體,表面積不一定相等!表面積相等的兩個長方體或一個長方體和一個正方體,棱長和也不一定相等![知識點2]長方體表面求法的變形:貼商標(biāo)類型:只求四周面積。例如:一個長方體包裝盒,長寬高分別為8,4,5,需要在包裝盒四周貼上商標(biāo),需要商標(biāo)紙的面積是多少?游泳池類型:只求四周和底面。例如:一座游泳池,長寬高分別為10m,4m,1.5m,需要在池貼上邊長為1dm的瓷磚,大約需要多少塊瓷磚?抽紙盒類型:六個面面積減去缺口面積。例如:一款抽紙盒,長寬高分別是20cm,12cm,5cm,上面有長14cm,寬3cm的抽紙口,做這款抽紙盒需要多少硬紙片?占地面積問題:只求底面面積。例如:一個長方體蓄水池,長12m,寬8m,深3m,這個水池占地面積多少平方米?[知識點3]棱長變化對表面積的影響:正方體正方體的棱長擴大2倍,其棱長和也擴大2倍,表面積擴大4倍,體積擴大8倍;正方體的棱長擴大3倍,其棱長和也擴大3倍,表面積擴大9倍,體積擴大27倍;正方體的棱長擴大n倍,其棱長和也擴大n倍,表面積擴大n2倍,體積擴大n3倍。2、長方體長方體的長寬高同時擴大2倍,其棱長和也擴大2倍,表面積擴大4倍,體積擴大8倍; 長方體的長寬高同時擴大3倍,其棱長和也擴大3倍,表面積擴大9倍,體積擴大27倍;長方體的長寬高同時擴大n倍,其棱長和也擴大n倍,表面積擴大n2倍,體積擴大n3倍。長方體的長擴大a倍,寬擴大b倍,高擴大c倍,棱長和變化無規(guī)律,表面積變化也無規(guī)律,體積擴大a×b×c倍。[知識點4]立體圖形的切割:〔切割會使表面積增加,因此存在表面積增加最多或最少的問題長方體沿與原來長方體最大面平行的方向切割,其表面積比原來增加的最多。沿與原來長方體最小面平行的方向切割,其表面積比原來增加的最少。而且每切一刀增加兩個完全相同的面,切兩刀增加四個完全相同的面,依次類推。正方體無論沿那個面平行的方向切,都將增加兩個正方形的面,增加的面積均為2a2不存在增加最多最少的問題。例如:兩盒磁帶有三種不同的包裝方式,你說哪一種最省包裝紙?要求最省包裝紙,即表面積最小,也就是表面積比原來單獨包裝時減少的表面積最多,根據(jù)規(guī)律應(yīng)該選擇第一種包裝方式。[知識點6]單位換算長度單位:mm、cm、dm、m相鄰兩個單位進率為10面積單位:mm2、cm2、dm2、m2相鄰兩個單位進率為100體積單位:mm3、cm3、dm3、m3相鄰兩個單位進率為1000容積單位:ml、l相鄰兩個單位進率為1000特別的:1ml=cm31l=1dm31方=1m大單位化小單位乘以進率,小單位化大單位除以進率。高級單位高級單位進率×高級單位的數(shù)低級單位低級單位的數(shù)÷進率[知識點1]容積與體積基本概念體積是指所占空間的大?。蝗莘e是指所容納物體的體積;一個物體的容積一般都比它的體積小。當(dāng)容器壁厚度忽略不計時體積=容積;否則體積<容積。比如說,一個洗發(fā)液的瓶子里面所能裝下的洗發(fā)液的體積就是它的容積?!踩萜鞅诤雎圆挥嬻w積計算方法:長方體的體積=長×寬×高正方體的體積=棱長×棱長×棱長長方體和正方體的體積=底面積×高=右面面積×長=前面面積×寬體積相等的兩個長方體或者一個長方體與個正方體,表面積不一定相等,棱長和也不一定相等。體積相等的兩個正方體,表面積一定相等,棱長和也一定相等。體積相等的情況下正方體的表面積比長方體的?。槐砻娣e相等的情況下正方體的體積比長方體的體積大。[知識點2]體積大小的比較對于液體可以直接比較體積的大小,如果液體體積小于容器既可以裝得下,如果大于容器體積則裝不下。對于固體而言,在體積小于容器體積的前提下,還需要比較物體的長寬高于容器的長寬高,只有物體的長寬高都小于或等于容器的長寬高時才可以將物體裝入容器。例如:有一個長為8分米,高位5分米,體積為240平方分米的硬紙盒,有一件瓷長為7.4分米,高位4分米,寬為6.5分米,是否可以放入該容器?分析:單純計算容器和瓷的體積我們可以發(fā)現(xiàn):瓷體積<硬紙盒體積。但這并不意味著瓷器就可以裝進盒子。我們還需要觀察瓷長寬高于容器長寬高的大小。通過計算硬紙盒的長=8分米寬=240÷〔8×5=6分米高=5分米瓷的長=7.4分米寬=6.5分米高=4分米我們可以發(fā)現(xiàn)瓷的寬比盒子的寬大,所以即使在體積小于盒子的前提下,仍然是裝不進去的。[知識點3]切割組合對體積的影響[知識點4]砌墻類問題練習(xí):〔1一塊長1.2米,寬6分米,厚3分米的長方體木塊,可以截出多少塊棱長為3分米的正方體?[知識點5]填土抬高地面類問題[知識點6]計算不規(guī)則物體體積的方法液面上升或下降的問題[知識點7]等體積變形問題[知識點8]展開圖形拼長方體或正方體棱長變化對體積的影響五年級數(shù)學(xué)下冊第三單元測試1、我會填.5.02m3=<>dm34.08L12.43dm3=<>dm3<>cm35m3500dm3=〔m800ml=<>cm3=<>dm3物體所占〔的大小叫物體的體積。正方體的6個面都是〔,6個面的面積都〔,12條棱的長度都〔。1立方米的正方體可以分成〔個1立方分米的小正方體,如果把這些小正方體排成一排,一共有〔米長。把一個棱長之和是12m的正方體鐵箱放在地面上,占地面積是〔,所站空間的大小是〔,做一個這樣的鐵箱至少要用鐵皮〔。3.7dm3=〔L=〔ml把一個長方體的長擴大4倍,寬擴大3倍,高擴大2倍,這個長方體的體積就擴大了〔倍。2、在橫線上填上適當(dāng)?shù)膯挝?。一塊橡皮的體積約是6______VCD機的體積約是22_______"神舟五號"載人航天飛船返回艙的容積為6_3、請在下圖中表示長方體和正方體的關(guān)系。4、一個長方體框架長8cm,寬6cm,高4cm,做這個框架共要__cm鐵絲,是求長方體的_;在表面貼上塑料板,共要_cm3塑料板,是求長方體的___;在里面能盛___升水,是求___;這個盒子有___立方米,是求___。5、一個噴霧器的藥箱容積是13L,如果每分鐘噴出藥液650ml,噴完一箱藥液需要用___分鐘。6、把60升水倒入一個棱長為5分米的正方體容器里,水的高度是____分米。7、一個長方體的底面積是32平方分米,高和寬都是4分米,這個長方體的表面積是____平方分米。8、如右圖的長方體,把它分成兩個完全相同的小長方體,表面積最少增加_________平方米。二、判斷題,1、正方體是長、寬、高都相等的長方體。2、一個箱子的容積就是它的體積。3、正方體和長方體的體積都可以用底面積乘以高來進行計算。4、把棱長是2m的石塊放在地上,石塊所占地面的面積是8m5、表面積相等的兩個長方體,它們的體積也相等.6、一個長方體和一個正方體,它們的底面周長相等,高也相等,則體積相等。7、將一個長方體橡皮泥捏成正方體,體積不變。容積和體積的意義相同。8、正方體的棱長擴大2倍,它的表面積就擴大8倍。9、一個正方體的底面周長是20厘米,這個正方體的體積是125立方厘米。10、物體所占的空間越大,表示它的體積就越大。11、求容積和求體積,計算方法相同。12、1升水等于1立方厘米水。三、選擇題.。1、一個正方體的棱長是6dm,它的表面積和體積相比較〔A、體積大B、表面積大C、同樣大D、無法比較2、正方體的棱長縮小3倍,它的表面積縮小〔倍,體積縮小〔倍。A、3B、9C、27D、543、下面<>圖可以折疊成正方體.A、B、C、D、4、把一個棱長5分米的正方體木塊,平均分成兩個大小完全一樣的長方體后,表面積〔,體積〔。A、不變B、變大C、變小D、不一定5、至少要用〔個棱長1cm的正方體才能拼成一個正方體A、6B、4C、8D、10五、計算1、解方程.9x-2.7=1.86x+0.27=25.43x+2x=12.548-5x=20.52、能簡算的要簡算.<6分>7.6+7.6X7.6+1.4X7.60.09+0.6+5.91+3.4五、求下面立體圖的表面積和體積.6666683333六、解決問題。1、冰雪大世界每年用的冰大約能融化成8萬立方米的水,它們相當(dāng)于多少個長

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論