版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖南省益陽市資陽區(qū)第六中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的焦點(diǎn)坐標(biāo)是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)2.已知雙曲線的實(shí)軸長為10,則該雙曲線的漸近線的斜率為()A. B.C. D.3.已知、分別是雙曲線的左、右焦點(diǎn),為一條漸近線上的一點(diǎn),且,則的面積為()A. B.C. D.14.已知為橢圓的兩個焦點(diǎn),過的直線交橢圓于兩點(diǎn),若,則()A. B.C. D.5.已知數(shù)列的前項和滿足,記數(shù)列的前項和為,.則使得的值為()A. B.C. D.6.已知圓上有三個點(diǎn)到直線的距離等于1,則的值為()A. B.C. D.17.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.48.某幾何體的三視圖如圖所示,則其對應(yīng)的幾何體是A. B.C. D.9.經(jīng)過點(diǎn)A(0,-3)且斜率為2的直線方程為()A. B.C. D.10.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x11.在等差數(shù)列中,為數(shù)列的前項和,,,則數(shù)列的公差為()A. B.C.4 D.12.如圖所示,已知是橢圓的左、右焦點(diǎn),為橢圓的上頂點(diǎn),在軸上,,且是的中點(diǎn),為坐標(biāo)原點(diǎn),若點(diǎn)到直線的距離為3,則橢圓的方程為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面和兩條不同的直線,則下列判斷中正確的序號是___________.①若,則;②若,則;③若,則;④若,則;14.的展開式中所有項的系數(shù)和為_________15.已知函數(shù),若在定義域內(nèi)有兩個零點(diǎn),那么實(shí)數(shù)a的取值范圍為___________.16.從某校隨機(jī)抽取某次數(shù)學(xué)考試100分以上(含100分,滿分150分)的學(xué)生成績,將他們的分?jǐn)?shù)數(shù)據(jù)繪制成如圖所示頻率分布直方圖.若共抽取了100名學(xué)生的成績,則分?jǐn)?shù)在內(nèi)的人數(shù)為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,討論的單調(diào)性;(2)當(dāng)時,證明18.(12分)已知點(diǎn)、分別是橢圓C:)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,當(dāng)∠PF1F2=時,面積達(dá)到最大,且最大值為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線l:與橢圓C交于A、B兩點(diǎn),求面積的最大值.19.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實(shí)數(shù)x的取值范圍.(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;20.(12分)已知圓.(1)若不過原點(diǎn)的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.21.(12分)已知等差數(shù)列}的公差為整數(shù),為其前n項和,,(1)求{}的通項公式:(2)設(shè),數(shù)列的前n項和為,求22.(10分)已知函數(shù).(1)記函數(shù),當(dāng)時,討論函數(shù)的單調(diào)性;(2)設(shè),若存在兩個不同的零點(diǎn),證明:為自然對數(shù)的底數(shù)).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)橢圓的方程求得的值,進(jìn)而求得橢圓的焦點(diǎn)坐標(biāo),得到答案.【詳解】由橢圓,可得,則,所以橢圓的焦點(diǎn)坐標(biāo)為和.故選:A.2、B【解析】利用雙曲線的實(shí)軸長為,求出,即可求出該雙曲線的漸近線的斜率.【詳解】由題意,,所以,,所以雙曲線的漸近線的斜率為.故選:B.【點(diǎn)睛】本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.3、A【解析】先表示出漸近線方程,設(shè)出點(diǎn)坐標(biāo),利用,解出點(diǎn)坐標(biāo),再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設(shè)在上,設(shè),由得,解得,的面積為.故選:A.4、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C5、B【解析】由,求得,得到,結(jié)合裂項法求和,即可求解.【詳解】數(shù)列的前項和滿足,當(dāng)時,;當(dāng)時,,當(dāng)時,適合上式,所以,則,所以.故選:B.6、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點(diǎn)到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.7、C【解析】直接運(yùn)用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C8、A【解析】根據(jù)三視圖即可還原幾何體.【詳解】根據(jù)三視圖,特別注意到三視圖中對角線的位置關(guān)系,容易判斷A正確.【點(diǎn)睛】本題主要考查了三視圖,屬于中檔題.9、A【解析】直接代入點(diǎn)斜式方程求解即可詳解】因為直線經(jīng)過點(diǎn)且斜率為2,所以直線的方程為,即,故選:10、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.11、A【解析】由已知條件列方程組求解即可【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得,故選:A12、D【解析】由題設(shè)可得,直線的方程為,點(diǎn)線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設(shè),則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、②④【解析】根據(jù)直線與直線,直線與平面的位置關(guān)系依次判斷每個選項得到答案.詳解】若,則或,異面,或,相交,①錯誤;若,則,②正確;若,則或或與相交,③錯誤;若,則,④正確;故答案為:②④.14、##0.015625【解析】賦值法求解二項式展開式中所有項的系數(shù)和.【詳解】令得:,即為展開式中所有項的系數(shù)和.故答案為:15、【解析】先求定義域,再求導(dǎo),針對分類討論,結(jié)合單調(diào)性,極值,最值得到,研究其單調(diào)性及其零點(diǎn),求出結(jié)果.【詳解】定義域為,,當(dāng)時,恒成立,在單調(diào)遞減,不會有兩個零點(diǎn),故舍去;當(dāng)時,在上,單調(diào)遞增,在上,單調(diào)遞減,故,又因為時,,時,,故要想在定義域內(nèi)有兩個零點(diǎn),則,令,,,單調(diào)遞增,又,故當(dāng)時,.故答案為:16、30【解析】根據(jù)頻率分布直方圖中所以小矩形面積和為1,可得a值,根據(jù)總?cè)藬?shù)和頻率,即可得答案.【詳解】因為頻率分布直方圖中所以小矩形面積和為1,所以,解得,所以分?jǐn)?shù)在內(nèi)的人數(shù)為.故答案為:30三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞減,在單調(diào)遞增;(2)見解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負(fù)即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問1詳解】時,,當(dāng)時,,∴,當(dāng)時,,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點(diǎn),且,當(dāng)時,,g(x)單調(diào)遞減,當(dāng)時,,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當(dāng)且僅當(dāng)時取等號,而,∴,∴,即,∴當(dāng)時,.【點(diǎn)睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過程中設(shè)計到隱零點(diǎn)的問題,需要掌握隱零點(diǎn)處理問題的常見思路和方法.18、(1)(2)3【解析】(1)根據(jù)焦點(diǎn)三角形的性質(zhì)可求出,從而可得標(biāo)準(zhǔn)方程,(2)聯(lián)立直線方程和橢圓方程,消元后利用公式表示三角形面積,從而可求面積的最大值.小問1詳解】△PF1F2面積達(dá)到最大時為橢圓的上頂點(diǎn)或下頂點(diǎn),而此時∠PF1F2=,故面積最大時為等邊三角形,故,因面積的最大值為,故,故,故橢圓的標(biāo)準(zhǔn)方程為:.【小問2詳解】設(shè),則由可得,此時恒成立.而,到的距離為,故的面積,令,設(shè),則,故在上為增函數(shù),故即的最大值為3.19、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉(zhuǎn)化為集合的包含關(guān)系,從而可求實(shí)數(shù)m的取值范圍.【詳解】(1)由p:為真,解得.(2)q:,若p是q的充分條件,則是的子集所以.即.20、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,然后根據(jù)直線與圓相切,即可求出答案;(2)首先根據(jù)題意判斷出最小圓的圓心在直線上,且最小圓的半徑為,然后設(shè)出最小圓的圓心為,則圓心到直線的距離為,從而可求出答案.【小問1詳解】因為直線不過原點(diǎn),設(shè)直線的方程為,圓的標(biāo)準(zhǔn)方程為,若直線與圓相切,則,即,解得或者3,所以直線的方程為或者;【小問2詳解】因為,所以直線與圓相離,所以所求最小圓的圓心一定在圓的圓心到直線的垂線段上,即最小圓的圓心在直線上,且最小圓的半徑為,設(shè)最小圓的圓心為,則圓心到直線的距離為,所以,即,解得(舍)或,所以最小的圓的方程為.21、(1)(2)【解析】(1)根據(jù)題意利用等差數(shù)列的性質(zhì)列出方程,即可解得答案;(2)根據(jù)(1)的結(jié)果,求出的表達(dá)式,利用裂項求和的方法求得答案.小問1詳解】設(shè)等差數(shù)列{}的公差為d,則,整理可得:,∵d是整數(shù),解得,從而,所以數(shù)列{}的通項公式為:;【小問2詳解】由(1)知,,所以22、(1)在和上單調(diào)遞增;在上單調(diào)遞減(2)證明見解析【解析】(1)先求導(dǎo),然后對導(dǎo)數(shù)化簡整理后再解不等式即可得單調(diào)性;(2)要證明,通過求函數(shù)的極值可證明,要證,根據(jù)有兩個不同的零點(diǎn),將問題轉(zhuǎn)化為證明成立,再通過換元從求函數(shù)的最值上證明.【小問1詳解】因為,所以,令,得或.所以時,或;時,.所以在和上單調(diào)遞增;在上單調(diào)遞減.【小問2詳解】因為,所以.當(dāng)時,,可得在上單調(diào)遞減,此時不可能存在兩個不同
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地鐵站點(diǎn)連接盾構(gòu)機(jī)租賃合同
- 農(nóng)村林地租賃合同:生態(tài)農(nóng)業(yè)研究
- 射箭比賽觀眾電梯租賃合同
- 校園籃球聯(lián)賽賽程安排手冊
- 網(wǎng)絡(luò)建設(shè)服務(wù)承諾模板
- 網(wǎng)絡(luò)安全遵紀(jì)守法經(jīng)營承諾書
- 影樓后期制作管理品質(zhì)控制
- 水上酒店防水工程合同
- 應(yīng)急維修工程師聘用協(xié)議
- 團(tuán)隊建設(shè)摩托車租賃合約
- 元明粉比重表
- 房地產(chǎn)估價理論與方法重要公式整理
- 房地產(chǎn)項目投資成本測算參考表
- 提高護(hù)士對搶救藥品知曉率PDCA案例精編版
- 大學(xué)英語四級改錯題12篇
- 正余弦定理知識點(diǎn)權(quán)威總結(jié)18頁
- 國企紀(jì)檢監(jiān)察嵌入式監(jiān)督的探索與實(shí)踐
- 淺議小升初數(shù)學(xué)教學(xué)銜接
- 旁站監(jiān)理記錄(高區(qū)空調(diào))
- 嬰幼兒大腦發(fā)育第一ppt課件
- 核磁共振實(shí)驗報告
評論
0/150
提交評論