版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆遼寧省東北育才、實驗中學(xué)、大連八中、鞍山一中等高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點(diǎn),的直線的斜率等于2,則的值為()A.0 B.1C.3 D.42.已知對稱軸為坐標(biāo)軸的雙曲線的兩漸近線方程為,若雙曲線上有一點(diǎn),使,則雙曲線的焦點(diǎn)()A.在軸上 B.在軸上C.當(dāng)時在軸上 D.當(dāng)時在軸上3.在等比數(shù)列中,,,則()A.2 B.4C.6 D.84.命題“”為真命題一個充分不必要條件是()A. B.C. D.5.已知函數(shù)在上可導(dǎo),且,則與的大小關(guān)系為A. B.C. D.不確定6.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對7.某中學(xué)舉行黨史學(xué)習(xí)教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機(jī)抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.8.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.9.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),且,當(dāng)時,,則不等式的解集為()A. B.C. D.10.已知向量=(3,0,1),=(﹣2,4,0),則3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)11.已知橢圓上一點(diǎn)到橢圓一個焦點(diǎn)的距離是,則點(diǎn)到另一個焦點(diǎn)的距離為()A.2 B.3C.4 D.512.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.6400二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列是首項為的遞增數(shù)列,若,,則滿足條件的數(shù)列的一個通項公式為______14.已知直線與雙曲線交于兩點(diǎn),則該雙曲線的離心率的取值范圍是______15.已知數(shù)列滿足,,則使得成立的n的最小值為__________.16.觀察式子:,,,由此歸納,可猜測一般性的結(jié)論為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,O為底面正方形ABCD對角線的交點(diǎn),E為PD的中點(diǎn),且PA=AD.(1)求證:PB∥平面EAC;(2)求直線BD與平面EAC所成角的正弦值.18.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.19.(12分)已知數(shù)列{an}的前n項和為Sn,an>0,a1<2,6Sn=(an+1)(an+2).(1)求證:數(shù)列{an}是等差數(shù)列;(2)令,數(shù)列{bn}的前n項和為Tn,求證:.20.(12分)在中,其頂點(diǎn)坐標(biāo)為.(1)求直線的方程;(2)求的面積.21.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長為(1)求圓C的方程;(2)若圓C上至少有三個不同的點(diǎn)到直線的距離為,求實數(shù)k的取值范圍22.(10分)已知橢圓焦距為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)過點(diǎn)的直線與C交于M,N兩點(diǎn),點(diǎn)R是直線上任意一點(diǎn),設(shè)直線的斜率分別為,若,求的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用斜率公式即求.【詳解】由題可得,∴.故選:A2、B【解析】設(shè)出雙曲線的一般方程,利用題設(shè)不等式,令二者平方,整理求得的,進(jìn)而可判斷出焦點(diǎn)的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點(diǎn)在軸上.故選B.【點(diǎn)睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對雙曲線標(biāo)準(zhǔn)方程的理解與運(yùn)用,求解時要注意焦點(diǎn)落在軸或軸的特點(diǎn),考查學(xué)生分析問題和解決問題的能力3、D【解析】由等比中項轉(zhuǎn)化得,可得,求解基本量,由等比數(shù)列通項公式即得解【詳解】設(shè)公比為,則由,得,即故,解得故選:D4、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B5、B【解析】由,所以.6、C【解析】根據(jù)目標(biāo)式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C7、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況,共有6種,利用對立事件進(jìn)行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.8、A【解析】準(zhǔn)確畫圖,由圖形對稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率【詳解】設(shè)與軸交于點(diǎn),由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點(diǎn)在圓上,,即,故選A【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時事半功倍,信手拈來9、D【解析】設(shè),則,分析可得為偶函數(shù)且,求出的導(dǎo)數(shù),分析可得在上為減函數(shù),進(jìn)而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當(dāng)時,,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D10、A【解析】直接根據(jù)空間向量的線性運(yùn)算,即可得到答案;【詳解】,故選:A11、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設(shè)橢圓的兩個焦點(diǎn)分別為,故可得,又到橢圓一個焦點(diǎn)的距離是,故點(diǎn)到另一個焦點(diǎn)的距離為.故選:.12、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當(dāng)另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當(dāng)另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.二、填空題:本題共4小題,每小題5分,共20分。13、,答案不唯一【解析】由,,可得,進(jìn)而解得,然后寫出通項公式即可.【詳解】設(shè)數(shù)列的公差為d,由題可得,因為,,所以有,解得,只要公差d滿足即可,然后根據(jù)等差數(shù)列的通項公式寫出即可,我們可以取,此時.故答案為:,答案不唯一.14、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.15、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項開始是公比為2的等比數(shù)列,進(jìn)而寫出的通項公式,即可求使成立的最小值n.【詳解】因為,所以,兩式相除得,整理得.因為,故從第二項開始是等比數(shù)列,且公比為2,因為,則,所以,則,由得:,故故答案為:11.16、【解析】根據(jù)規(guī)律,不等式的左邊是個自然數(shù)倒數(shù)的平方的和,右邊分母是以2為首項,1為公差的等差數(shù)列,分子是以3為首項,2為公差的等差數(shù)列,由此可得結(jié)論【詳解】解:觀察可以發(fā)現(xiàn),第個不等式左端有項,分子為1,分母依次為,,,,;右端分母為,分子成等差數(shù)列,首項為3,公差為2,因此第個不等式()故答案為:()三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)利用線面平行的判斷定理,證明線線平行,即可證明;(2)建立空間直角坐標(biāo)系,求平面的法向量,利用公式,即可求解.【小問1詳解】連結(jié)EO,由題意可得O為BD的中點(diǎn),又E是PD的中點(diǎn),∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小問2詳解】如圖,以A為原點(diǎn),AB、AD、AP所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,設(shè)AD=2,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),設(shè)平面EAC的法向量為=(x,y,z),則,即,即,令y=1得x=-1,z=-1,∴平面EAC的一個法向量為=(-1,1,-1),∴設(shè)直線BD與平面EAC所成的角為θ,則sinθ=∴直線BD與平面EAC所成的角的正弦值.18、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計算能力.19、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)數(shù)列通項與前項和的關(guān)系,構(gòu)造新等式,作差整理得到,進(jìn)而求解結(jié)論;(2)求出數(shù)列{an}的通項公式,再代入裂項求和即可.【小問1詳解】證明:因為,所以當(dāng)時,,兩式相減,得到,整理得,又因為an>0,所以,所以數(shù)列{an}是等差數(shù)列,公差為3;【小問2詳解】證明:當(dāng)n=1時,6S1=(a1+1)(a1+2),解得a1=1或a1=2,因為a1<2,所以a1=1,由(1)可知公差d=3,所以an=a1+(n﹣1)d=1+(n﹣1)×3=3n﹣2,所以,所以=.20、(1)(2)【解析】(1)先求出AB的斜率,再利用點(diǎn)斜式寫出方程即可;(2)先求出,再求出C到AB的距離即可得到答案.【小問1詳解】由已知,,所以直線的方程為,即.【小問2詳解】,C到直線AB的距離為,所以的面積為.21、(1)或;(2).【解析】(1)設(shè)圓心為,由題意及圓的弦長公式即可列方程組,解方程組即可;(2)由題意可將問題轉(zhuǎn)化為圓心到直線l:的距離,解不等式即可.【詳解】解:(1)設(shè)圓心為,半徑為r,根據(jù)題意得,解得,所以圓C的方程為或(2)由(1)知圓C的圓心為或,半徑為,由圓C上至少有三個不同的點(diǎn)到直線l:的距離為,可知圓心到直線l:的距離即,所以,解得所以直線l斜率的取值范圍為22、(1);(2).【解析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物業(yè)租賃合同(34篇)
- 黃金卷1-【贏在中考·黃金八卷】(解析版)
- 烏魯木齊市實驗學(xué)校2024屆高三上學(xué)期1月月考數(shù)學(xué)試題(解析版)
- 2025屆江西省新余一中學(xué)中考四模生物試題含解析
- 2022-2023學(xué)年山東省濱州市高一上學(xué)期期末考試地理試題(解析版)
- 2024年度天津市公共營養(yǎng)師之二級營養(yǎng)師自我檢測試卷A卷附答案
- 2025年中國血壓計治療儀行業(yè)未來趨勢預(yù)測分析及投資規(guī)劃研究建議報告
- 2024年度四川省公共營養(yǎng)師之四級營養(yǎng)師練習(xí)題及答案
- 2024年度四川省公共營養(yǎng)師之二級營養(yǎng)師押題練習(xí)試題A卷含答案
- 中國尖頭型保險絲管項目投資可行性研究報告
- 江西省景德鎮(zhèn)市2023-2024學(xué)年高二上學(xué)期1月期末質(zhì)量檢測數(shù)學(xué)試題 附答案
- 2024年辦公樓衛(wèi)生管理制度模版(3篇)
- 船舶防火與滅火(課件)
- 保險公司2024年工作總結(jié)(34篇)
- 2024年01月22503學(xué)前兒童健康教育活動指導(dǎo)期末試題答案
- 湖北省荊州市八縣市2023-2024學(xué)年高一上學(xué)期1月期末考試 化學(xué) 含解析
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項考試題庫-上(單選題)
- 《水文化概論》全套教學(xué)課件
- 期末測評(基礎(chǔ)卷二)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- 深圳大學(xué)《數(shù)值計算方法》2021-2022學(xué)年第一學(xué)期期末試卷
- 社區(qū)共享菜園建設(shè)方案及實施計劃
評論
0/150
提交評論