版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)P是橢圓上一點(diǎn)且的最大值為,則橢圓離心率為()A. B.C. D.2.已知橢圓:的離心率為,則實(shí)數(shù)()A. B.C. D.3.下列函數(shù)求導(dǎo)運(yùn)算正確的個(gè)數(shù)為()①;②;③;④.A.1 B.2C.3 D.44.已知直線與圓相交于兩點(diǎn),當(dāng)?shù)拿娣e最大時(shí),的值是()A. B.C. D.5.在正方體ABCD﹣A1B1C1D1中,E為棱A1B1上一點(diǎn),且AB=2,若二面角B1﹣BC1﹣E為45°,則四面體BB1C1E的外接球的表面積為()A.π B.12πC.9π D.10π6.已知等邊三角形的一個(gè)頂點(diǎn)在橢圓E上,另兩個(gè)頂點(diǎn)位于E的兩個(gè)焦點(diǎn)處,則E的離心率為()A. B.C. D.7.函數(shù)的導(dǎo)數(shù)為()A.B.CD.8.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A.4 B.9C.23 D.649.在數(shù)列中,,則此數(shù)列最大項(xiàng)的值是()A.102 B.C. D.10810.已知,則()A. B.1C. D.11.過雙曲線的左焦點(diǎn)作x軸的垂線交曲線C于點(diǎn)P,為右焦點(diǎn),若,則雙曲線的離心率為()A. B.C. D.12.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.6 B.0.4C.0.3 D.0.2二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量,且,則______.14.以下四個(gè)關(guān)于圓錐曲線的命題中:①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),若,則動(dòng)點(diǎn)P的軌跡為雙曲線;②拋物線焦點(diǎn)坐標(biāo)是;③過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若,則動(dòng)點(diǎn)P的軌跡為橢圓;④曲線與曲線(且)有相同的焦點(diǎn)其中真命題的序號(hào)為______(寫出所有真命題的序號(hào).)15.已知函數(shù),則滿足實(shí)數(shù)的取值范圍是__16.雙曲線的離心率為____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)已知圓C經(jīng)過點(diǎn),,且它的圓心C在直線上.(1)求圓C的方程;(2)過點(diǎn)作圓C的兩條切線,切點(diǎn)分別為M,N,求三角形PMN的面積.18.(12分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點(diǎn),是C上一點(diǎn),且,求C的方程.19.(12分)在對(duì)某老舊小區(qū)污水分流改造時(shí),需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級(jí)污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價(jià)為400元/平方米,中間兩道隔墻的建造單價(jià)為248元/平方米,池底的建造單價(jià)為80元/平方米,池蓋的建造單價(jià)為100元/平方米,建造此污水處理池相關(guān)人員的勞務(wù)費(fèi)以及其他費(fèi)用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計(jì)算時(shí)忽略不計(jì))(1)現(xiàn)有財(cái)政撥款9萬(wàn)元,如果將污水處理池的寬建成9米,那么9萬(wàn)元的撥款是否夠用?(2)能否通過合理的設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總費(fèi)用最低?最低費(fèi)用為多少萬(wàn)元?20.(12分)已知函數(shù).(1)判斷的單調(diào)性.(2)證明:.21.(12分)在△中,已知、、分別是三內(nèi)角、、所對(duì)應(yīng)的邊長(zhǎng),且(Ⅰ)求角的大?。唬á颍┤?,且△的面積為,求.22.(10分)已知中,內(nèi)角的對(duì)邊分別為,且滿足.(1)求的值;(2)若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)橢圓的定義可得,從而得到,則,其中,再根據(jù)對(duì)勾函數(shù)的性質(zhì)求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因?yàn)樵谏蠁握{(diào)遞減,所以當(dāng)時(shí)函數(shù)取得最大值,即,即所以,即,所以,解得或(舍去)故選:A2、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因?yàn)椋运?,解?故選:C3、A【解析】根據(jù)導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)的基本公式計(jì)算后即可判斷【詳解】解:①,故錯(cuò)誤;②,故正確;③,故錯(cuò)誤;④,故錯(cuò)誤.所以求導(dǎo)運(yùn)算正確的個(gè)數(shù)為1.故選:A.4、C【解析】利用點(diǎn)到直線的距離公式和弦長(zhǎng)公式可以求出的面積是關(guān)于的一個(gè)式子,即可求出答案.【詳解】圓心到直線的距離,弦長(zhǎng)為..當(dāng),即時(shí),取得最大值.故選:C.5、D【解析】連接交于,可得,利用線面垂直的判定定理可得:平面,于是,可得而為二面角的平面角,再求出四面體的外接球半徑,進(jìn)而利用球的表面積計(jì)算公式得出結(jié)論【詳解】連接交于,則,易知,則平面,所以,從而為二面角的平面角,則.因?yàn)?,所以,所以四面體的外接球半徑故四面體BB1C1E的外接球的表面積為故選:D【點(diǎn)睛】本題考查了正方體的性質(zhì)、線面垂直的判定與性質(zhì)定理、二面角的平面角、球的表面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題6、B【解析】根據(jù)已知條件求得的關(guān)系式,從而求得橢圓的離心率.【詳解】依題意可知,所以.故選:B7、B【解析】由導(dǎo)數(shù)運(yùn)算法則可求出.【詳解】,.故選:B.8、C【解析】直接按程序框圖運(yùn)行即可求出結(jié)果.【詳解】初始化數(shù)值,,第一次執(zhí)行循環(huán)體,,,1≥4不成立;第二次執(zhí)行循環(huán)體,,,2≥4不成立;第三次執(zhí)行循環(huán)體,,,3≥4不成立;第四次執(zhí)行循環(huán)體,,,4≥4成立;輸出故選:C9、D【解析】將將看作一個(gè)二次函數(shù),利用二次函數(shù)的性質(zhì)求解.【詳解】將看作一個(gè)二次函數(shù),其對(duì)稱軸為,開口向下,因?yàn)椋援?dāng)時(shí),取得最大值,故選:D10、B【解析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運(yùn)算法則即可求出【詳解】因?yàn)椋怨蔬x:B11、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.12、A【解析】根據(jù)正態(tài)曲線的對(duì)稱性即可求得答案.【詳解】由題意,正態(tài)曲線的對(duì)稱軸為,則與關(guān)于對(duì)稱軸對(duì)稱,于是.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項(xiàng)分布的均值與方差的關(guān)系求得,再根據(jù)方差的性質(zhì)求解即可.【詳解】,所以,又因?yàn)?所以故答案為:12【點(diǎn)睛】本題主要考查了二項(xiàng)分布的均值與方差的計(jì)算,同時(shí)也考查了方差的性質(zhì),屬于基礎(chǔ)題.14、②④##④②【解析】利用雙曲線定義判斷命題①;寫出拋物線焦點(diǎn)判斷命題②;分析點(diǎn)P滿足的關(guān)系判斷命題③;按取值討論計(jì)算半焦距判斷命題④作答.【詳解】對(duì)于①,因雙曲線定義中要求,則命題①不正確;對(duì)于②,拋物線化為:,其焦點(diǎn)坐標(biāo)是,命題②正確;對(duì)于③,令定圓C的圓心為C,因,則點(diǎn)P是弦AB的中點(diǎn),當(dāng)P與C不重合時(shí),有,點(diǎn)P在以線段AC為直徑的圓上,當(dāng)P與C重合時(shí),點(diǎn)P也在以線段AC為直徑的圓上,因此,動(dòng)點(diǎn)P的軌跡是以線段AC為直徑的圓(除A點(diǎn)外),則命題③不正確;對(duì)于④,曲線的焦點(diǎn)為,當(dāng)時(shí),橢圓中半焦距c滿足:,其焦點(diǎn)為,當(dāng)時(shí),雙曲線中半焦距滿足:,其焦點(diǎn)為,因此曲線與曲線(且)有相同的焦點(diǎn),命題④正確,所以真命題的序號(hào)為②④.故答案為:②④【點(diǎn)睛】易錯(cuò)點(diǎn)睛:橢圓長(zhǎng)短半軸長(zhǎng)分別為a,b,半焦距為c滿足關(guān)系式:;雙曲線的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)、半焦距分別為、、滿足關(guān)系式:,在同一問題中出現(xiàn)認(rèn)真區(qū)分,不要混淆.15、【解析】分別對(duì),分別大于1,等于1,小于1的討論,即可.【詳解】對(duì),分別大于1,等于1,小于1的討論,當(dāng),解得當(dāng),不存在,當(dāng)時(shí),,解得,故x的范圍為點(diǎn)睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等16、【解析】由題意得:考點(diǎn):雙曲線離心率三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題設(shè)知,設(shè)圓心,應(yīng)用兩點(diǎn)距離公式列方程求參數(shù)a,進(jìn)而確定圓心坐標(biāo)、半徑,寫出圓C的方程;(2)利用兩點(diǎn)距離公式、切線的性質(zhì)可得、,再應(yīng)用三角形面積公式求三角形PMN的面積.【小問1詳解】由已知,可設(shè)圓心,且,從而有,解得.所以圓心,半徑.所以,圓C的方程為.【小問2詳解】連接PC,CM,CN,MN,由(1)知:圓心,半徑.所以.又PM,PN是圓C的切線,所以,,則,,所以,所以.18、(1);(2).【解析】(1)由可知,即可求出,故可得漸近線方程;(2)利用點(diǎn)在拋物線上及其拋物線的定義列方程求解即可.【詳解】(1)∵E的離心率,∴,即,解得,故E的漸近線方程為.(2)∵是C上一點(diǎn),∴①,由拋物線的定義可知②,兩式聯(lián)立可得,解得則C的方程為.19、(1)不夠;(2)將污水處理池建成長(zhǎng)為16.2米,寬為10米時(shí),建造總費(fèi)用最低,最低費(fèi)用為90000元.【解析】(1)根據(jù)題意結(jié)合單價(jià)直接計(jì)算即可得出;(2)設(shè)污水處理池的寬為米,表示出總費(fèi)用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長(zhǎng)為(米),建造總費(fèi)用為:(元)因?yàn)?,所以如果污水處理池的寬建?米,那么9萬(wàn)元的撥款是不夠用的.【小問2詳解】設(shè)污水處理池的寬為米,建造總費(fèi)用為元,則污水處理池的長(zhǎng)為米.則因?yàn)?,等?hào)僅當(dāng),即時(shí)成立,所以時(shí)建造總費(fèi)用取最小值90000,所以將污水處理池建成長(zhǎng)為16.2米,寬為10米時(shí),建造總費(fèi)用最低,最低費(fèi)用為90000元.20、(1)在R上單調(diào)遞增,無(wú)單調(diào)遞減區(qū)間;(2)證明見解析.【解析】(1)對(duì)求導(dǎo),令并應(yīng)用導(dǎo)數(shù)求最值,確定的符號(hào),即可知的單調(diào)性.(2)利用作差法轉(zhuǎn)化證明的結(jié)論,令結(jié)合導(dǎo)數(shù)研究其單調(diào)性,最后討論的大小關(guān)系判斷的符號(hào)即可證結(jié)論.【小問1詳解】由題設(shè),.令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增故,即,則在R上單調(diào)遞增,無(wú)單調(diào)遞減區(qū)間.【小問2詳解】.令,則.令,則,顯然在R上單調(diào)遞增,且,∴當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故,即,在R上單調(diào)遞增,又,∴當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),.綜上,,即.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,應(yīng)用作差法有,構(gòu)造中間函數(shù)并應(yīng)用導(dǎo)數(shù)研究單調(diào)性,最后討論的大小證結(jié)論.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到關(guān)于
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文書模板-新型智慧城市運(yùn)行中心建設(shè)情況報(bào)告
- 元素與物質(zhì)分類-2023年中考化學(xué)一輪復(fù)習(xí)(解析版)
- 濟(jì)寧2024年統(tǒng)編版小學(xué)6年級(jí)上冊(cè)英語(yǔ)第三單元真題
- 2024-2025學(xué)年江蘇省鎮(zhèn)江某中學(xué)高二(上)月考物理試卷(10月)(含答案)
- DB4107T 501-2024 知識(shí)產(chǎn)權(quán)保護(hù)中心服務(wù)規(guī)范 一般要求
- 五年級(jí)科學(xué)下冊(cè)期末試題分類匯編:地表緩慢變化
- 2024年鍋爐自控優(yōu)化裝置項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 2024年安全員C證考試100題及解析
- 纖維增強(qiáng)復(fù)合材料防眩格柵技術(shù)規(guī)范(征求意見稿)
- 幼兒園年終工作述職報(bào)告范文(30篇)
- 部編版2024-2025學(xué)年語(yǔ)文五年級(jí)上冊(cè)第4單元-單元測(cè)試卷(含答案)
- 期中 (試題) -2024-2025學(xué)年人教PEP版英語(yǔ)六年級(jí)上冊(cè)
- 大學(xué)與文化傳承智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 2024年心理咨詢師(中科院心理研究所版)考試題庫(kù)大全-上(單選題)
- 2024春形勢(shì)與政策課件當(dāng)前國(guó)際形勢(shì)與中國(guó)原則立場(chǎng)
- 2024年舟山繼續(xù)教育公需課考試題庫(kù)
- 一年級(jí)拼音默寫表
- 2024屆高考英語(yǔ)閱讀理解命題說(shuō)題課件
- 《思想道德與法治》 課件 第四章 明確價(jià)值要求 踐行價(jià)值準(zhǔn)則
- 小組合作學(xué)習(xí)模式在小學(xué)英語(yǔ)閱讀教學(xué)中的運(yùn)用
- 混凝土預(yù)制管樁施工方案
評(píng)論
0/150
提交評(píng)論