版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南京市第二十九中2023年高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的部分圖象與軸交于點,與軸的一個交點為,如圖所示,則下列說法錯誤的是()A. B.的最小正周期為6C.圖象關(guān)于直線對稱 D.在上單調(diào)遞減2.已知長方體中,,,則直線與所成角的余弦值是()A. B.C. D.3.在各項都為正數(shù)的數(shù)列中,首項為數(shù)列的前項和,且,則()A. B.C. D.4.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.5.已知集合,從集合A中任取一點P,則點P滿足約束條件的概率為()A. B.C. D.6.在平面直角坐標(biāo)系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.7.已知,則下列不等式一定成立的是()A. B.C. D.8.已知直線與直線,若,則()A.6 B.C.2 D.9.直線與直線平行,則兩直線間的距離為()A. B.C. D.10.在等差數(shù)列中,,表示數(shù)列的前項和,則()A.43 B.44C.45 D.4611.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.1012.已知為原點,點,以為直徑的圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,且,則______,數(shù)列的通項_____14.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________15.在空間直角坐標(biāo)系中,向量為平面ABC的一個法向量,其中,,則向量的坐標(biāo)為______16.圓上的點到直線的距離的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設(shè)首項為2的數(shù)列的前n項和為,前n項積為,且(1)求數(shù)列的通項公式;(2)求的值18.(12分)已知雙曲線與有相同的漸近線,且經(jīng)過點.(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點,且線段的中點在圓上,求實數(shù)的值.19.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)求的單調(diào)區(qū)間;20.(12分)在中,角A、B、C的對邊分別為a、b、c,已知,且.(1)求的面積;(2)若a、b、c成等差數(shù)列,求b的值.21.(12分)已知圓.(1)若不過原點的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.22.(10分)設(shè)函數(shù)過點(1)求函數(shù)的單調(diào)區(qū)間和極值(要列表);(2)求函數(shù)在上的最大值和最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)函數(shù)的圖象求出,再利用函數(shù)的性質(zhì)結(jié)合周期公式逆推即可求解.【詳解】因為函數(shù)的圖象與軸交于點,所以,又,所以,A正確;因為的圖象與軸的一個交點為,即,所以,又,解得,所以,所以,求得最小正周期為,B正確;,所以是的一條對稱軸,C正確;令,解得,所以函數(shù)在,上單調(diào)遞減,D錯誤故選:D.2、C【解析】建立空間直角坐標(biāo)系,設(shè)直線與所成角為,由求解.【詳解】∵長方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系,,則,,,,所以,,設(shè)直線與所成角為,則,∴直線和夾角余弦值是.故選:C.3、C【解析】當(dāng)時,,故可以得到,因為,進(jìn)而得到,所以是等比數(shù)列,進(jìn)而求出【詳解】由,得,得,又?jǐn)?shù)列各項均為正數(shù),且,∴,∴,即∴數(shù)列是首項,公比的等比數(shù)列,其前項和,得,故選:C.4、A【解析】先聯(lián)立直線和橢圓的方程,結(jié)合中點公式及點可求a的值.【詳解】設(shè),聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.5、C【解析】根據(jù)圓的性質(zhì),結(jié)合兩條直線的位置關(guān)系、幾何概型計算公式進(jìn)行求解即可.【詳解】,圓心坐標(biāo)為,半徑為,直線互相垂直,且交點為,由圓的性質(zhì)可知:點P滿足約束條件的概率為,故選:C6、A【解析】設(shè)雙曲線半焦距為c,求出,由給定的正三角形建立等量關(guān)系,結(jié)合計算作答.【詳解】設(shè)雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A7、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B8、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為直線與直線,且,所以,解得;故選:A9、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當(dāng)時,,,此時,故兩直線平行時又之間的距離為,故選:B.10、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.11、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點,且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A12、A【解析】求圓的圓心和半徑,根據(jù)圓的標(biāo)準(zhǔn)方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】判斷出是等差數(shù)列,由此求得,利用累加法求得.【詳解】依題意,則,所以數(shù)列是以為首項,公差為的等差數(shù)列,所以,,當(dāng)時,,,也符合上式,所以.故答案為:;14、【解析】先求出直線所過的定點,當(dāng)該定點為弦的中點時弦長最短,利用點斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過定點圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.15、【解析】根據(jù)向量為平面ABC的一個法向量,由求解.【詳解】因為,,所以,又因為向量為平面ABC的一個法向量,所以,解得,所以,故答案為:16、【解析】先求得圓心到直線的距離,結(jié)合圓上的點到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,所以圓上的點到直線的距離的最大值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)若選①可得,從而得到,即可得到是常數(shù)列,即可求出數(shù)列的通項公式;若選②,根據(jù),作差即可得到,再利用累乘法計算可得;若選③:可得,即可得到數(shù)列是等差數(shù)列,首項為2,公差為1,從而求出數(shù)列的通項公式;(2)由(1)可得,利用裂項相消法計算可得;【小問1詳解】解:選①:∵即∴即∴數(shù)列是常數(shù)列∴∴選②:∵∴時,則即∴∴當(dāng)時,也滿足,∴選③:因為,所以,所以數(shù)列是等差數(shù)列,首項為2,公差為1則∴【小問2詳解】解:由(1)可得,∴18、(1)(2)【解析】(1)根據(jù)所求雙曲線與有共同的漸近線可設(shè)出所求雙曲線方程為,在根據(jù)點在雙曲線上,代入雙曲線方程中即可求解.(2)聯(lián)立直線與雙曲線的方程,得關(guān)于的一元二次方程,利用韋達(dá)定理得出的關(guān)系,再根據(jù)中點坐標(biāo)公式求出線段的中點的坐標(biāo),代入圓方程即可求解.【小問1詳解】由題意,設(shè)雙曲線的方程為,則又因為雙曲線過點,,所以雙曲線的方程為:【小問2詳解】由,消去整理,得,設(shè),則因為直線與雙曲線交于不同的兩點,所以,解得.,所以則中點坐標(biāo)為,代入圓得,解得.實數(shù)的值為19、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時,在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.20、(1);(2).【解析】(1)先利用數(shù)量積和余弦值得到,再利用面積公式計算即得結(jié)果;(2)根據(jù)等差數(shù)列得到,再結(jié)合余弦定理進(jìn)行運算得到關(guān)于b的關(guān)系,求值即可.【詳解】(1)由得,所以,所以,所以,所以;(2)因為a、b、c成等差數(shù)列,所以,由余弦定理得,即,解得.21、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,然后根據(jù)直線與圓相切,即可求出答案;(2)首先根據(jù)題意判斷出最小圓的圓心在直線上,且最小圓的半徑為,然后設(shè)出最小圓的圓心為,則圓心到直線的距離為,從而可求出答案.【小問1詳解】因為直線不過原點,設(shè)直線的方程為,圓的標(biāo)準(zhǔn)方程為,若直線與圓相切,則,即,解得或者3,所以直線的方程為或者;【小問2詳解】因為,所以直線與圓相離,所以所求最小圓的圓心一定在圓的圓心到直線的垂線段上,即最小圓的圓心在直線上,且最小圓的半徑為,設(shè)最小圓的圓心為,則圓心到直線的距離為,所以,即,解得(舍)或,所以最小的圓的方程為.22、(1)增區(qū)間,,減區(qū)間,極大值,極小值(2)最大值,最小值【解析】(1)將點代入函數(shù)解析式即可求得a,對函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能工廠安全管理系統(tǒng)采購與實施合同2篇
- 2024版軟件版權(quán)分配合作合同版B版
- 二零二五年度環(huán)保組織與捐贈方之間的環(huán)保捐贈合同3篇
- 二零二五年度汽車維修服務(wù)常規(guī)銷售合同2篇
- 二零二五年度網(wǎng)絡(luò)侵權(quán)一次性賠償合同3篇
- 保健品行業(yè)行政后勤工作總結(jié)
- 二零二五年度海綿城市建設(shè)項目工程合同管理訂購協(xié)議6篇
- 2025年度綠色二零二五年度綠色食品生產(chǎn)銷售合同范本3篇
- 蘭州石化職業(yè)技術(shù)大學(xué)《高等程數(shù)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶工程職業(yè)技術(shù)學(xué)院《大學(xué)數(shù)學(xué)Ⅰ微積分》2023-2024學(xué)年第一學(xué)期期末試卷
- (2024年)Maya三維建模教案
- 國開電大本科《理工英語4》機考真題(第六套)
- 公共資源交易培訓(xùn)課件
- 2024年二級造價師題庫(鞏固)
- 業(yè)主與物業(yè)公司調(diào)解協(xié)議書
- 師德師風(fēng)防性侵知識講座
- 寫字樓項目風(fēng)險評估報告
- 庫存周轉(zhuǎn)率與庫存周轉(zhuǎn)天數(shù)
- 絕緣子鹽密、灰密試驗
- 農(nóng)業(yè)信息感知與傳輸技術(shù)
- 燃?xì)庑孤╊A(yù)警系統(tǒng)設(shè)計
評論
0/150
提交評論