版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東、湖北省部分重點中學(xué)2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.42.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.3.復(fù)數(shù),且z在復(fù)平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)m的值可以為()A.2 B.C. D.04.拋物線C:的焦點為F,P,R為C上位于F右側(cè)的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.5.內(nèi)角A,B,C的對邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形6.已知,是空間中的任意兩個非零向量,則下列各式中一定成立的是()A. B.C. D.7.春秋時期孔子及其弟子所著的《論語·顏淵》中有句話:“非禮勿視,非禮勿聽,非禮勿言,非禮勿動.”意思是:不符合禮的不看,不符合禮的不聽,不符合禮的不說,不符合禮的不做.“非禮勿聽”可以理解為:如果不合禮,那么就不聽.從數(shù)學(xué)角度來說,“合禮”是“聽”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件8.對數(shù)的創(chuàng)始人約翰·奈皮爾(JohnNapier,1550-1617)是蘇格蘭數(shù)學(xué)家.直到18世紀(jì),瑞士數(shù)學(xué)家歐拉發(fā)現(xiàn)了指數(shù)與對數(shù)的互逆關(guān)系,人們才認識到指數(shù)與對數(shù)之間的天然關(guān)系對數(shù)發(fā)現(xiàn)前夕,隨著科技的發(fā)展,天文學(xué)家做了很多的觀察,需要進行很多計算,特別是大數(shù)的連乘,需要花費很長時間.基于這種需求,1594年,奈皮爾運用了獨創(chuàng)的方法構(gòu)造出對數(shù)方法.現(xiàn)在隨著科學(xué)技術(shù)的需要,一些冪的值用數(shù)位表示,譬如,所以的數(shù)位為4.那么的數(shù)位是()(注)A.6 B.7C.606 D.6079.拋物線的焦點到雙曲線的漸近線的距離是()A. B.C.1 D.10.,則()A. B.C. D.11.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.以點為圓心,且與直線相切的圓的方程是____________14.設(shè)正項等比數(shù)列的公比為,前項和為,若,則_______________.15.圓與圓的公共弦長為______16.曲線在點處的切線方程為_____________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,且經(jīng)過點.(1)求的方程;(2)設(shè)的右焦點為F,過F作兩條互相垂直的直線AB和DE,其中A,B,D,E都在橢圓上,求的取值范圍.18.(12分)平面直角坐標(biāo)系中,過橢圓:右焦點的直線交M于A,B兩點,P為AB的中點,且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點,若四邊形ACBD的對角線CD與AB垂直,求四邊形ACBD面積的最大值.19.(12分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點,(1)證明:;(2)設(shè)平面平面,求l與平面MND所成角的正弦值20.(12分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標(biāo).21.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為6.(1)求拋物線的方程;(2)若不過原點的直線與拋物線交于A、B兩點,且,求證:直線過定點并求出定點坐標(biāo).22.(10分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)的幾何意義,即可求出目標(biāo)函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標(biāo)函數(shù),即,表示斜率為,截距為的直線,由圖可知,當(dāng)直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.2、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.3、B【解析】根據(jù)復(fù)數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當(dāng)z在復(fù)平面內(nèi)對應(yīng)的點在第二象限時,則有,可得,結(jié)合選項可知,B正確故選:B4、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A5、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C6、C【解析】利用向量數(shù)量積的定義及運算性質(zhì)逐一分析各選項即可得答案.【詳解】解:對A:因為,所以,故選項A錯誤;對B:因為,故選項B錯誤;對C:因為,故選項C正確;對D:因為,故選項D錯誤故選:C.7、B【解析】如果不合禮,那么就不聽.轉(zhuǎn)化為它的逆否命題.即可判斷出答案.【詳解】如果不合禮,那么就不聽的逆否命題為:如果聽,那么就合理.故“合禮”是“聽”的必要條件.故選:B.8、D【解析】根據(jù)已知條件,設(shè),則,求出t的范圍,即可判斷其數(shù)位.【詳解】設(shè),則,則,則,,的數(shù)位是607.故選:D.9、B【解析】先確定拋物線的焦點坐標(biāo),和雙曲線的漸近線方程,再由點到直線的距離公式即可求出結(jié)果.【詳解】因為拋物線的焦點坐標(biāo)為,雙曲線的漸近線方程為,由點到直線的距離公式可得.故選:B10、B【解析】求出,然后可得答案.【詳解】,所以故選:B11、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.12、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設(shè)出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結(jié)果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設(shè)過拋物線的焦點的直線方程為,由可得,,因為拋物線的準(zhǔn)線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關(guān)性質(zhì),主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關(guān)性質(zhì),考查了計算能力,是中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直線與圓相切,圓心到直線距離等于半徑,由點到直線的距離公式求出半徑,然后可得.【詳解】圓心到直線的距離,又圓與直線相切,所以,所以圓的方程為.故答案為:14、【解析】由可知公比,所以直接利用等比數(shù)列前項和公式化簡,即可求出【詳解】解:因為,所以,所以,所以,化簡得,因為等比數(shù)列的各項為正數(shù),所以,所以,故答案為:【點睛】此題考查等比數(shù)列前項和公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題15、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:16、【解析】首先判定點在曲線上,然后利用導(dǎo)數(shù)的幾何意義求得答案.【詳解】由題意可知點在曲線上,而,故曲線在點處的切線斜率為,所以切線方程:,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,及經(jīng)過點建立等式可求解;(2)分斜率存在與不存在兩種情況進行討論,當(dāng)斜率存在時,計算與后再求范圍即可.【小問1詳解】由題意知的離心率為,整理得,又因為經(jīng)過點,所以,解得,所以,因此,的方程為.小問2詳解】由已知可得,當(dāng)直線AB或DE有一條的斜率不存在時,可得,或,,此時有或.當(dāng)AB和DE的斜率都存在時且不為0時,設(shè)直線:,直線:,,,,由得,所以,,所以,用替換可得.所以,綜上所述,的取值范圍為.18、(1)(2)【解析】(1)設(shè),,的中點為,利用“點差法”求解;(2)由求得A,B的坐標(biāo),進而得到的長,再根據(jù),設(shè)直線的方程為,由,求得的長,然后由四邊形的面積為求解.【小問1詳解】解:把右焦點代入直線,得,設(shè),,的中點為,則,,相減得,即,即,即.又,,則.又,解得,,故橢圓的方程為.【小問2詳解】聯(lián)立消去,可得,解得或,故交點為,.所以.因為,所以可設(shè)直線的方程為,,,聯(lián)立消去,得到,因為直線與橢圓有兩個不同的交點,則,解得,且,又,則.故四邊形的面積為,故當(dāng)時,取得最大值,最大值為.所以四邊形的面積的最大值為.19、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問1詳解】∵PD⊥平面ABCD,,以點D為坐標(biāo)原點,DA,DC,DP所在直線分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系Dxyz,則D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小問2詳解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD與平面MND所成的角即為l與平面MND所成的角由(1)知,設(shè)平面MND的一個法向量,則,取,則,于是是平面MND的一個法向量,因為,設(shè)l與平面MND所成角為,則20、(1).(2).【解析】分析:(1)先根據(jù)求出k的值,再利用平行線間的距離公式求與的距離.(2)先根據(jù)求出k的值,再解方程組得與的交點的坐標(biāo).詳解:(1)若,則由,即,解得或.當(dāng)時,直線:,直線:,兩直線重合,不符合,故舍去;當(dāng)時,直線:,直線:,所以.(2)若,則由,得.所以兩直線方程為:,:,聯(lián)立方程組,解得,所以與的交點的坐標(biāo)為.點睛:(1)本題主要考查直線的位置關(guān)系和距離的計算,意在考查學(xué)生對這些知識的掌握水平和計算能力.(2)直線與直線平行,則且兩直線不重合.直線與直線垂直,則.21、(1)(2)證明見解析,定點坐標(biāo)為(8,0).【解析】(1)根據(jù)拋物線的定義,即可求出結(jié)果;(2)由題意直線方程可設(shè)為,將其與拋物線方程聯(lián)立,再將轉(zhuǎn)化為,根據(jù)韋達定理,化簡求解,即可求出定點.【小問1詳解】解:拋物線的頂點在原點,焦點在軸上,且拋物線上有一點,設(shè)拋物線的方程為,到焦點的距離為6,即有點到準(zhǔn)線的距離為6,即解得,即拋物線的標(biāo)準(zhǔn)方程為;【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024秋八年級數(shù)學(xué)上冊 第6章 一次函數(shù)6.4 課題學(xué)習(xí) 選擇方案教案(新版)蘇科版
- 2024秋八年級數(shù)學(xué)上冊 第十五章 分式15.2 分式的運算 4分式的加減-異分母的分式相加減教學(xué)設(shè)計(新版)新人教版
- 高中語文 第五單元 散而不亂 氣脈中貫 第1課 六國論教案4 新人教版選修中國古代詩歌散文鑒賞
- 2024年五年級數(shù)學(xué)下冊 八 探索樂園單元概述與課時安排教案 冀教版
- 2023九年級化學(xué)下冊 第十二單元 化學(xué)與生活 課題2 化學(xué)元素與人體健康教案 (新版)新人教版
- 潤滑脂 軸承動態(tài)壽命試驗方法(征求意見稿)
- 運輸合同范本(2篇)
- 湖南專升本課件
- 景陽岡課件閱讀
- 幼兒園小班音樂《怪汽車》課件
- 職業(yè)衛(wèi)生健康考試題庫
- 財經(jīng)素養(yǎng)知識考試題及答案
- Unit 5 TV Shows lesson 1(教學(xué)設(shè)計)-2024-2025學(xué)年人教新起點版英語五年級上冊
- GB/T 25052-2024連續(xù)熱浸鍍層鋼板和鋼帶尺寸、外形、重量及允許偏差
- 敘事護理學(xué)智慧樹知到答案2024年中國人民解放軍海軍軍醫(yī)大學(xué)
- 口腔黏膜疾病的診斷和治療新進展
- 護理收費標(biāo)準(zhǔn)課件
- 期中測試卷(1-4單元)(試題)-2024-2025學(xué)年六年級上冊數(shù)學(xué)
- 人教部編版小學(xué)語文六年上冊《習(xí)作:有你真好》說課稿及教學(xué)反思共三篇
- 預(yù)支款項協(xié)議書
- 完整版抖音運營推廣方案課件
評論
0/150
提交評論