版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆吐魯番市高昌區(qū)第二中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱錐S-ABC中,E,F(xiàn)分別為SA,BC的中點,點G在EF上,且滿足,若,,,則()A. B.C. D.2.設(shè)雙曲線:的左,右焦點分別為,,過的直線與雙曲線的右支交于A,B兩點,若,則雙曲線的離心率為()A.4 B.2C. D.3.命題“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得4.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.5.雙曲線的焦距是()A.4 B.C.8 D.6.已知且,則的值為()A.3 B.4C.5 D.67.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.8.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.設(shè)數(shù)列的前項和為,當(dāng)時,,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.10.若直線與直線垂直,則a的值為()A.2 B.1C. D.11.已知函數(shù)的導(dǎo)數(shù)為,則等于()A.0 B.1C.2 D.412.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.某位同學(xué)參加物理、化學(xué)、政治科目的等級考,依據(jù)以往成績估算該同學(xué)在物理、化學(xué)、政治科目等級中達的概率分別為假設(shè)各門科目考試的結(jié)果互不影響,則該同學(xué)等級考至多有1門學(xué)科沒有獲得的概率為___________.14.已知數(shù)列的前項和為,且滿足,,則___________.15.函數(shù)y=x3+ax2+bx+a2在x=1處有極值10,則a=________.16.生活中有這樣的經(jīng)驗:三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機.這個經(jīng)驗用我們所學(xué)的數(shù)學(xué)公理可以表述為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)三棱錐中,,,,直線與平面所成的角為,點在線段上.(1)求證:;(2)若點在上,滿足,點滿足,求實數(shù)使得二面角的余弦值為.18.(12分)已知以點為圓心的圓與直線相切,過點的動直線l與圓A相交于M,N兩點(1)求圓A的方程(2)當(dāng)時,求直線l方程19.(12分)已知橢圓的左、右焦點分別為,過右焦點作直線交于,其中的周長為的離心率為.(1)求的方程;(2)已知的重心為,設(shè)和的面積比為,求實數(shù)的取值范圍.20.(12分)如圖,在三棱錐中,側(cè)面為等邊三角形,,,平面平面,為的中點.(1)求證:;(2)若,求二面角的大小.21.(12分)已知命題p:實數(shù)x滿足(其中);命題q:實數(shù)x滿足(1)若,為真命題,求實數(shù)x的取值范圍;(2)若p是q的充分條件,求實數(shù)的取值范圍22.(10分)如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,D是AC的中點.(1)證明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用空間向量基本定理結(jié)合已知條件求解【詳解】因為,所以,因為E,F(xiàn)分別為SA,BC的中點,所以,故選:B2、B【解析】根據(jù)雙曲線的定義及,求出,,,,再利用余弦定理計算可得;【詳解】解:依題意可知、,又且,所以,,,,則,且,即,即,所以離心率.故選:B3、D【解析】的否定是,的否定是,的否定是.故選D【考點】全稱命題與特稱命題的否定【方法點睛】全稱命題的否定是特稱命題,特稱命題的否定是全稱命題.對含有存在(全稱)量詞的命題進行否定需要兩步操作:①將存在(全稱)量詞改成全稱(存在)量詞;②將結(jié)論加以否定4、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C5、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎(chǔ)題.6、C【解析】由空間向量數(shù)量積的坐標(biāo)運算求解【詳解】由已知,解得故選:C7、D【解析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D8、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.9、A【解析】根據(jù)等差中項寫出式子,由遞推式及求和公式寫出和,進而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項求和是首項為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因為,,,即,所以,則,當(dāng)且僅當(dāng)時,,符合題意,故的最大值為.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應(yīng)用,考查分析問題能力,屬于難題.10、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A11、A【解析】先對函數(shù)求導(dǎo),然后代值計算即可【詳解】因為,所以.故選:A12、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應(yīng)用問題,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】考慮3門或者2門兩種情況,計算概率得到答案.【詳解】.故答案為:.14、【解析】當(dāng)時,,可得,可得數(shù)列隔項成等比數(shù)列,即所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,分別求和,即可得解.【詳解】因為,,所以,當(dāng)時,,∴,所以數(shù)列的奇數(shù)項和偶數(shù)項分別是等比數(shù)列,所以.故答案為:.15、4【解析】∵y′=3x2+2ax+b,∴或當(dāng)a=-3,b=3時,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=416、不在同一直線上的三點確定一個平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個點不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點確定一個平面.故答案為:不在同一直線上的三點確定一個平面.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)證明平面,利用線面垂直的性質(zhì)可證得結(jié)論成立;(2)設(shè),以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可得出關(guān)于實數(shù)的等式,即可解得實數(shù)的值.【小問1詳解】證明:因為,,則且,,平面,所以為直線與平面所成的線面角,即,,故,,,平面,平面,因此,.【小問2詳解】解:設(shè),由(1)可知且,,因為平面,,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,由,取,則,由已知可得,解得.當(dāng)點為線段的中點時,二面角的平面角為銳角,合乎題意.綜上所述,.18、(1);(2)或.【解析】(1)利用圓心到直線的距離公式求圓的半徑,從而求解圓的方程;(2)根據(jù)相交弦長公式,求出圓心到直線的距離,設(shè)出直線方程,再根據(jù)點到直線的距離公式確定直線方程【詳解】(1)由題意知到直線的距離為圓A半徑r,所以,所以圓A的方程為(2)設(shè)的中點為Q,則由垂徑定理可知,且,在中由勾股定理易知,設(shè)動直線l方程為:或,顯然符合題意由到直線l距離為1知得所以或為所求直線方程【點睛】本題考查圓的標(biāo)準(zhǔn)方程及直線與圓的相交弦長問題,考查學(xué)生分析解決問題的能力,屬于中檔題19、(1)(2)【解析】(1)已知焦點弦三角形的周長,以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設(shè)點設(shè)直線,第二步聯(lián)立方程韋達定理,第三步條件轉(zhuǎn)化,利用三角形等面積法,列方程,第四步利用韋達定理進行轉(zhuǎn)化,計算即可.【小問1詳解】因為的周長為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達定理得,.令,②則,可得當(dāng)時,當(dāng)時,所以,又解得③由①②③得,解得.所以實數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達定理得,.所以因為,所以解得②由①②解得.所以實數(shù)的取值范圍是.20、(1)證明見解析(2)【解析】(1)取中點,由面面垂直和線面垂直性質(zhì)可證得,結(jié)合,由線面垂直判定可證得平面,由線面垂直性質(zhì)可得結(jié)論;(2)以為坐標(biāo)原點可建立空間直角坐標(biāo)系,由向量數(shù)乘運算可求得點坐標(biāo),利用二面角的向量求法可求得結(jié)果.【小問1詳解】取中點,連接,為等邊三角形,為中點,,平面平面,平面平面,平面,平面,又平面,;分別為中點,,又,,平面,,平面,又平面,.【小問2詳解】以為坐標(biāo)原點,為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,,設(shè),則,,由得:,解得:,即,,設(shè)平面的法向量,則,令,解得:,,;又平面的一個法向量,;由圖象知:二面角為銳二面角,二面角的大小為.21、(1)(2)【解析】(1)由得命題p:,然后由為真命題求解;(2)由得,再根據(jù)是的充分條件求解.小問1詳解】當(dāng)時,,解得:,由為真命題,,解得;【小問2詳解】由(其中)可得,因為是的充分條件,則,解得:22、(1)證明見解析(2)【解析】(1),連接,證明,再根據(jù)線面平行的判定定理即可得證;(2)說明平面,取的中點F,連接,以D為原點,分別以的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,利用向量法即可得出答案.【小問1詳解】證明:記,連接,由直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林藝術(shù)學(xué)院《水彩畫實踐》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年供應(yīng)工廠燈具合同范本
- 吉林師范大學(xué)《中國現(xiàn)當(dāng)代文學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年大型游艇租賃合同范本
- 2024年大批旺鋪轉(zhuǎn)讓合同范本
- 2022年公務(wù)員多省聯(lián)考《申論》真題(河南縣級卷)及答案解析
- 燒烤店商家合作協(xié)議書范文
- 外研版高中英語選修6教案
- (人教版2024)數(shù)學(xué)四年級上冊第7單元《條形統(tǒng)計圖》大單元教學(xué)課件
- 吉林師范大學(xué)《世界古代史專題》2021-2022學(xué)年第一學(xué)期期末試卷
- 動畫概論教程課件 第4章 動畫的分類
- 區(qū)域市場的開發(fā)與管理
- 單元103熱固性塑料注射成型及模具
- 譯林版六年級上冊英語 unit 5 story time課件
- 五年級上冊閱讀理解20篇(附帶答案解析)經(jīng)典1
- 2023年國家電投校園招聘筆試題庫及答案解析
- SB/T 10016-2008冷凍飲品冰棍
- GB/T 28035-2011軟件系統(tǒng)驗收規(guī)范
- GB/T 1591-2008低合金高強度結(jié)構(gòu)鋼
- 公開課課件拿來主義
- 煤礦人力資源管理制度
評論
0/150
提交評論