版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
最新北師大版七年級數(shù)學(xué)下冊期末試卷(培優(yōu)篇)(Word版含解析)一、解答題1.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當(dāng)點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;(3)如圖3,當(dāng)點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).2.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結(jié)FA、FB,E是射線FA上的一點,若,,且,求n的值.3.如圖,已知直線,點在直線上,點在直線上,點在點的右側(cè),平分平分,直線交于點.(1)若時,則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動,其他條件不變,請畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)4.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點在的上方,問,,之間有何數(shù)量關(guān)系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點,用含有的式子表示的度數(shù).5.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過點作,分別交、于點、,繞著點旋轉(zhuǎn),但與、始終有交點,問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.二、解答題6.閱讀下面材料:小穎遇到這樣一個問題:已知:如圖甲,為之間一點,連接,求的度數(shù).她是這樣做的:過點作則有因為所以①所以所以即_;1.小穎求得的度數(shù)為__;2.上述思路中的①的理由是__;3.請你參考她的思考問題的方法,解決問題:已知:直線點在直線上,點在直線上,連接平分平分且所在的直線交于點.(1)如圖1,當(dāng)點在點的左側(cè)時,若,則的度數(shù)為;(用含有的式子表示).(2)如圖2,當(dāng)點在點的右側(cè)時,設(shè),直接寫出的度數(shù)(用含有的式子表示).7.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動.(1)如圖1,EF∥MN,點A、B分別為直線EF、MN上的一點,點P為平行線間一點,請直接寫出∠PAF、∠PBN和∠APB之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線OM與射線ON交于點O,直線m∥n,直線m分別交OM、ON于點A、D,直線n分別交OM、ON于點B、C,點P在射線OM上運動.①當(dāng)點P在A、B(不與A、B重合)兩點之間運動時,設(shè)∠ADP=∠α,∠BCP=∠β.則∠CPD,∠α,∠β之間有何數(shù)量關(guān)系?請說明理由;②若點P不在線段AB上運動時(點P與點A、B、O三點都不重合),請你畫出滿足條件的所有圖形并直接寫出∠CPD,∠α,∠β之間的數(shù)量關(guān)系.8.如圖,AB⊥AK,點A在直線MN上,AB、AK分別與直線EF交于點B、C,∠MAB+∠KCF=90°.(1)求證:EF∥MN;(2)如圖2,∠NAB與∠ECK的角平分線交于點G,求∠G的度數(shù);(3)如圖3,在∠MAB內(nèi)作射線AQ,使∠MAQ=2∠QAB,以點C為端點作射線CP,交直線AQ于點T,當(dāng)∠CTA=60°時,直接寫出∠FCP與∠ACP的關(guān)系式.9.如圖1,E點在BC上,∠A=∠D,AB∥CD.(1)直接寫出∠ACB和∠BED的數(shù)量關(guān)系;(2)如圖2,BG平分∠ABE,與∠CDE的鄰補角∠EDF的平分線交于H點.若∠E比∠H大60°,求∠E;(3)保持(2)中所求的∠E不變,如圖3,BM平分∠ABE的鄰補角∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不變,請求值;若改變,請說理由.10.綜合與探究綜合與實踐課上,同學(xué)們以“一個含角的直角三角尺和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.實踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結(jié)論的基礎(chǔ)上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.三、解答題11.己知:如圖①,直線直線,垂足為,點在射線上,點在射線上(、不與點重合),點在射線上且,過點作直線.點在點的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說明;(3)如圖③,若,點在射線上運動,的平分線交的延長線于點,在點運動過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.12.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點D、E分別是邊AB、BC的中點,若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點D、E分別在邊AB、AC上,連接BE、CD交于點O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.13.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).14.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長BE交CD于點H,點F為線段EH上一動點,∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點G,試用含α的式子表示∠BGD的大?。唬?)如圖3,延長BE交CD于點H,點F為線段EH上一動點,∠EBM的角平分線與∠FDN的角平分線交于點G,探究∠BGD與∠BFD之間的數(shù)量關(guān)系,請直接寫出結(jié)論:.15.互動學(xué)習(xí)課堂上某小組同學(xué)對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內(nèi)一點,連接,,試探究與,,之間的關(guān)系.小明:可以用三角形內(nèi)角和定理去解決.小麗:用外角的相關(guān)結(jié)論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質(zhì))∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結(jié)果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點,則,與之間的數(shù)量關(guān)系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數(shù).【參考答案】一、解答題1.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過三角形內(nèi)角和得到,由角平分線解析:(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過三角形內(nèi)角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問題的關(guān)鍵.2.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.3.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點B在點A左側(cè)和當(dāng)點B在點A右側(cè),再分三種情況,討論,分別過點E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計算即可.【詳解】解:(1)當(dāng)n=20時,∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點B在點A左側(cè)時,由(2)可知:∠BED=n°+40°;當(dāng)點B在點A右側(cè)時,如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點睛】此題考查了平行線的判定與性質(zhì),以及角平分線的定義,正確應(yīng)用平行線的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.4.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PF解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進(jìn)而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令A(yù)B與PF交點為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令A(yù)B與PF交點為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點睛】本題主要考查平行線的性質(zhì)與判定,靈活運用平行線的性質(zhì)與判定是解題的關(guān)鍵.5.(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)解析:(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.二、解答題6.;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)B解析:;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)BE平分平分求出,過點E作EF∥AB,根據(jù)平行線的性質(zhì)求出∠BEF=,,再利用周角求出答案.【詳解】1、過點作則有因為所以①所以所以即;故答案為:;2、過點作則有因為所以EF∥CD(平行于同一條直線的兩條直線平行),故答案為:平行于同一條直線的兩條直線平行;3、(1)∵BE平分平分∴,過點E作EF∥AB,由1可得∠BED=,∴∠BED=,故答案為:;(2)∵BE平分平分∴,過點E作EF∥AB,則∠ABE=∠BEF=,∵∴EF∥CD,∴,∴,∴.【點睛】此題考查平行線的性質(zhì):兩直線平行內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,平行線的推論,正確引出輔助線是解題的關(guān)鍵.7.(1)∠PAF+∠PBN+∠APB=360°;(2)①,見解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據(jù)平行線的性質(zhì)得∠PAF+∠APC=180°,∠解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,見解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據(jù)平行線的性質(zhì)得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;(2)①過P作PE∥AD交ON于E,根據(jù)平行線的性質(zhì),可得到,,于是;②分兩種情況:當(dāng)P在OB之間時;當(dāng)P在OA的延長線上時,仿照①的方法即可解答.【詳解】解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:作PC∥EF,如圖1,∵PC∥EF,EF∥MN,∴PC∥MN,∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,∴∠PAF+∠APC+∠PBN+∠CPB=360°,∴∠PAF+∠PBN+∠APB=360°;(2)①,理由如下:如答圖,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴②當(dāng)P在OB之間時,,理由如下:如備用圖1,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;當(dāng)P在OA的延長線上時,,理由如下:如備用圖2,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;綜上所述,∠CPD,∠α,∠β之間的數(shù)量關(guān)系是或.【點睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補.難點是分類討論作平行輔助線.8.(1)見解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定義可得∠MAB+∠KCN=90°,然后根據(jù)同角的余角相等可得∠KAN=∠K解析:(1)見解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定義可得∠MAB+∠KCN=90°,然后根據(jù)同角的余角相等可得∠KAN=∠KCF,從而判斷兩直線平行;(2)設(shè)∠KAN=∠KCF=α,過點G作GH∥EF,結(jié)合角平分線的定義和平行線的判定及性質(zhì)求解;(3)分CP交射線AQ及射線AQ的反向延長線兩種情況結(jié)合角的和差關(guān)系分類討論求解.【詳解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)設(shè)∠KAN=∠KCF=α則∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α∴∠FCG=∠KCG+∠KCF=90°+α過點G作GH∥EF∴∠HGC=∠FCG=90°+α又∵M(jìn)N∥EF∴MN∥GH∴∠HGA=∠GAN=45°+α∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45°(3)①當(dāng)CP交射線AQ于點T∵∴又∵∴由(1)可得:EF∥MN∴∵∴∵,∴∴即∠FCP+2∠ACP=180°②當(dāng)CP交射線AQ的反向延長線于點T,延長BA交CP于點G,由EF∥MN得∴又∵,,∴∵,∴∴∴由①可得∴∴綜上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【點睛】本題考查平行線的判定和性質(zhì)以及角的和差關(guān)系,準(zhǔn)確理解題意,正確推理計算是解題關(guān)鍵.9.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠ACB+∠CEF=180°,由對頂角相等可得結(jié)論;(2)如圖2,作EMCD,HNCD,根據(jù)ABCD,可得ABEMHNCD,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)∠DEB比∠DHB大60°,列出等式即可求∠DEB的度數(shù);(3)如圖3,過點E作ESCD,設(shè)直線DF和直線BP相交于點G,根據(jù)平行線的性質(zhì)和角平分線定義可求∠PBM的度數(shù).【詳解】解:(1)如圖1,延長交于點,,,,,,,,故答案為:;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,,解得.的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過點作,設(shè)直線和直線相交于點,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).10.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進(jìn)而得出結(jié)論;(3)過點C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點作,平分,,,又,,,,,又,,.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.三、解答題11.(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因為△BCD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因為△BCD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點睛:本題主要考查垂線,角平分線和三角形面積,解題的關(guān)鍵是找準(zhǔn)相等的角求解.12.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問題連接AE.∵點D、E分別是邊AB、BC的中點,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.13.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯誤;③設(shè)三角形的三個內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時,是“準(zhǔn)互余三角形”.【點睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.14.(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°解析:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據(jù)角平分線的性質(zhì)求出∠EBD+∠EDB=(∠ABD+∠BDC),根據(jù)平行線的性質(zhì)∠ABD+∠BDC=180°,從而根據(jù)∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)過點G作GP∥AB,根據(jù)AB∥CD,得到GP∥AB∥CD,從而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根據(jù)∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分線的定義求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)過點F、G分別作FM∥AB、GM∥AB,從而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根據(jù)BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【詳解】解:(1)證明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如圖2,由(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 分切機(jī)出售轉(zhuǎn)讓合同范例
- 快餐餐飲服務(wù)合同范例
- 九年級中考備戰(zhàn)會上的精彩演講稿范文
- 小區(qū)大齡保潔合同范例
- 前期工程門窗合同范例
- 《作業(yè)危害全部》課件
- 小吃店租店合同范例
- 恒大地產(chǎn)投資合同范例
- 商鋪按揭投資合同模板
- 個體往來協(xié)議合同范例
- 高級教師職稱面試講課答辯題目及答案
- 與城投公司的合作協(xié)議(成立公司合作協(xié)議)
- 有效教學(xué) 崔允漷 讀書匯報
- 鋁合金模板工程設(shè)計與施工專項方案技術(shù)交底
- 初中英語詞性講解課件
- 陜西中考物理備考策略課件
- 9F燃機(jī)燃機(jī)規(guī)程
- aiissti變頻器說明書
- 綠化養(yǎng)護(hù)報價表
- 家校溝通案例七篇
- 大學(xué)生心理健康教育論文范文3000字(8篇)
評論
0/150
提交評論