版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter0Introduction
MechanicsofMaterialsDeformationandStrainWelcometomechanicsofmaterials.Inthelastvideo,forcesandstresseswerediscussed,thisvedioisgoingtodiscussdeformationsandstrains.DeformationTransformationofabodyfromitsoriginalconfigurationtoanewconfiguration.ElasticdeformationPlasticdeformationDeformationisthetransformationofabodyfromitsoriginalconfigurationtoanew
configuration.Itincludeschangesofsizeandshape.Deformationcouldbeclassifiedintoelasticdeformationandplasticdeformation.Elasticdeformationisatransitorydimensionalchangethatexistsonlywhiletheinitiatingstressisappliedanddisappearsimmediatelyuponremovalofthestress.Plasticdeformationisadimensionalchangethatdoesnotdisappearwhentheinitiatingstressisremoved.②Shear①AxialtensionFzy⑤Combindeddeformation③Tortion④BendingBasicdeformationtypesInthiscourse,deformationcanbeclassifiedintofourcategories,*axialtension,*axialcompression,*shear,*torsion*and*bending.PPNormalstrainShearstrainSizechangeετShapechangeStrainAsaforementioned,deformationincludessizechangeandshapechange.Sizechangeischaracterizedbynormalstrain,denotedbyσ.Shapechangeischaracterizedbyshearstrain,denotedbyε.Nowlet’slookatthedefinitionsofthetwostrains.NormalstrainUndeformedDeformedΔsΔs’。
。。。Dimensionless+:elongation-:contractionNormalstrainnn’Averagenormalstrain*Formembersbeforedeformation,*let’stakealinesegmentonthemember,andtheoriginallengthofthesegmentisΔs,*afterdeformation,*thelengthofthesegmentbecomesΔs’.WhentheΔsapproacheszero,thetwopointsapproachthesamepoint,*andthenormalstrainatthispointisdefinedspecificallyalongtheorientationoftheoriginallinen,thatisthelimitofΔs’-ΔsdividedbyΔs.Fromthisexpression,itcanbeseenthatthedenominatorandnumeratorbothhaveunitsoflength,therefore,*normalstrainisdimensionless.Sinceεdescribesthesizechange,*apositiveεindicateselongation,*whileanegativeεindicatescontraction.*Bytheway,Δs’-ΔsdividedbyΔsisdefinedasaveragenormalstrain.Shearstrainntn’t’UndeformedDeformedShearstrainInradianChangeintherightangleShearstrain,again,*formembersbeforedeformation,*let’sdrawapairofaxisnandt,nrepresentsnormal,trepresentstangent,thesetwoaxisarealwaysperpendiculartoeachother.*Alongthesetwoaxis,therearetwoshortlengthonthemember.*Afterdeformation,thetwoaxisdeformed,andthetwoshortlengthsdeformedwiththem.*Thisanglenowbecomesθ’.Whenthetwoshortlengthsapproachzero,*shearstrainisdefinedfortheirintersectionpoint,γnt,equalstohalfPI-θ’.*Thesubsrciptionntforγindicatesthisshearstrainisspecificallydefinedfortheorientationofntaxis.Inotherwords,atthesamepoint,shearstrainisdifferentfordifferentorientation.*Theangleherearebothradian,sotheunitsofγisalsoradian.*γsimplydescribesthechangeintherightangle.Whenγispositive,indicatestheanglebecomessmaller,whilenegtiveγindicatingtheanglebecomeslarger.StresselementzxyNormalstress:σx
,
σy
and
σzTriaxialShearstress:τxy
,
τyz
and
τzxNormalstress:σxand
σyShearstress:τxy
BiaxialσyStrainUndeformedzxyΔzΔxΔyDeformedzxyπ/2Normalstrain:εx
,
εy
and
εzShearstrain:γxy
,
γyz
and
γzxγxyεx(1+εx)ΔxSimilarly,*foranundeformedparticlerepresentedbythiscubeelement,ithasthreelength,*ΔxΔxalongxdirection,*Δyalongydirectionand*Δzalongzdirection.*Andallanglesarerightangle.*Thedeformationofthisparticlecanalsobefullycharacterizedbysixstraincomponents,*threenormalstrain,εx,εyandεz,*thatdescibethesizechangealongx,yandzdirection,respectively,*andthreeshearstrain,γxy,γyzandγzx,*thatdescribetheanglechangewithinxyplane,yzplaneandzxplane,respectively.Notethat,strainsarerelatedtotheforcesactingonthecube,whichareknownasstress,normalstressorshearstress.Therefore,afterdeformation,thiselementhasanewsize,*forthelengthalongxdirection,theoriginallength
Δxchangedinto
(1+εx)multipliedbyΔx.Andnewlengthalongyandzdirectionscanbeobtainedsimilarly.Fortheanglechangesofthiselement,*withinthexyplane,theanglehalfπnowchangedintohalfπ-γxy.and
halfπ+γxy.γxyistheshear
strainassociatedwithxyplane.Andangleswithintheyzplaneandzxplanehavesimilarchanges.Example1:Determine①theaveragestrainalongab;②anglechangebetweeenlineabandad.250200adcba’0.025γLet’slookatexample1.itasksyoutodeterminetheaveragestrainalongabandanglechangebetweeenlineabandad.Forthefirstquestion,*fromthedefinitionofaveragestrain,itisequaltothefinallengthΔs‘-originallengthΔs,dividedbytheoriginallengthΔs.Therefore,*itequalstoa’b-ab,dividedbyab,*equalsto0.025dividedby200,*resultingin125times10tominus6.Forthesecondquestion,theanglechangebetweenadandab,*tha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具搬遷施工方案
- 大數(shù)據(jù)在網(wǎng)站營(yíng)銷中的應(yīng)用-深度研究
- 互動(dòng)式教學(xué)與課程成效-深度研究
- 互聯(lián)網(wǎng)法律風(fēng)險(xiǎn)防控策略-深度研究
- 機(jī)器人手術(shù)效率分析-深度研究
- 保險(xiǎn)數(shù)據(jù)隱私保護(hù)-深度研究
- 智能摩托車智能語音交互-深度研究
- 人工智能在知識(shí)產(chǎn)權(quán)法中的角色-深度研究
- 人才招聘模式創(chuàng)新研究-深度研究
- 農(nóng)藥產(chǎn)業(yè)鏈協(xié)同發(fā)展-深度研究
- 《天潤(rùn)乳業(yè)營(yíng)運(yùn)能力及風(fēng)險(xiǎn)管理問題及完善對(duì)策(7900字論文)》
- 醫(yī)院醫(yī)學(xué)倫理委員會(huì)章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 農(nóng)民專業(yè)合作社財(cái)務(wù)報(bào)表(三張報(bào)表)
- 動(dòng)土作業(yè)專項(xiàng)安全培訓(xùn)考試試題(帶答案)
- 大學(xué)生就業(yè)指導(dǎo)(高職就業(yè)指導(dǎo)課程 )全套教學(xué)課件
- 死亡病例討論總結(jié)分析
- 第二章 會(huì)展的產(chǎn)生與發(fā)展
- 空域規(guī)劃與管理V2.0
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- 商戶用電申請(qǐng)表
評(píng)論
0/150
提交評(píng)論