(1.3.4)-ch0-4 Deformation and strain材料力學(xué)材料力學(xué)_第1頁
(1.3.4)-ch0-4 Deformation and strain材料力學(xué)材料力學(xué)_第2頁
(1.3.4)-ch0-4 Deformation and strain材料力學(xué)材料力學(xué)_第3頁
(1.3.4)-ch0-4 Deformation and strain材料力學(xué)材料力學(xué)_第4頁
(1.3.4)-ch0-4 Deformation and strain材料力學(xué)材料力學(xué)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Chapter0Introduction

MechanicsofMaterialsDeformationandStrainWelcometomechanicsofmaterials.Inthelastvideo,forcesandstresseswerediscussed,thisvedioisgoingtodiscussdeformationsandstrains.DeformationTransformationofabodyfromitsoriginalconfigurationtoanewconfiguration.ElasticdeformationPlasticdeformationDeformationisthetransformationofabodyfromitsoriginalconfigurationtoanew

configuration.Itincludeschangesofsizeandshape.Deformationcouldbeclassifiedintoelasticdeformationandplasticdeformation.Elasticdeformationisatransitorydimensionalchangethatexistsonlywhiletheinitiatingstressisappliedanddisappearsimmediatelyuponremovalofthestress.Plasticdeformationisadimensionalchangethatdoesnotdisappearwhentheinitiatingstressisremoved.②Shear①AxialtensionFzy⑤Combindeddeformation③Tortion④BendingBasicdeformationtypesInthiscourse,deformationcanbeclassifiedintofourcategories,*axialtension,*axialcompression,*shear,*torsion*and*bending.PPNormalstrainShearstrainSizechangeετShapechangeStrainAsaforementioned,deformationincludessizechangeandshapechange.Sizechangeischaracterizedbynormalstrain,denotedbyσ.Shapechangeischaracterizedbyshearstrain,denotedbyε.Nowlet’slookatthedefinitionsofthetwostrains.NormalstrainUndeformedDeformedΔsΔs’。

。。。Dimensionless+:elongation-:contractionNormalstrainnn’Averagenormalstrain*Formembersbeforedeformation,*let’stakealinesegmentonthemember,andtheoriginallengthofthesegmentisΔs,*afterdeformation,*thelengthofthesegmentbecomesΔs’.WhentheΔsapproacheszero,thetwopointsapproachthesamepoint,*andthenormalstrainatthispointisdefinedspecificallyalongtheorientationoftheoriginallinen,thatisthelimitofΔs’-ΔsdividedbyΔs.Fromthisexpression,itcanbeseenthatthedenominatorandnumeratorbothhaveunitsoflength,therefore,*normalstrainisdimensionless.Sinceεdescribesthesizechange,*apositiveεindicateselongation,*whileanegativeεindicatescontraction.*Bytheway,Δs’-ΔsdividedbyΔsisdefinedasaveragenormalstrain.Shearstrainntn’t’UndeformedDeformedShearstrainInradianChangeintherightangleShearstrain,again,*formembersbeforedeformation,*let’sdrawapairofaxisnandt,nrepresentsnormal,trepresentstangent,thesetwoaxisarealwaysperpendiculartoeachother.*Alongthesetwoaxis,therearetwoshortlengthonthemember.*Afterdeformation,thetwoaxisdeformed,andthetwoshortlengthsdeformedwiththem.*Thisanglenowbecomesθ’.Whenthetwoshortlengthsapproachzero,*shearstrainisdefinedfortheirintersectionpoint,γnt,equalstohalfPI-θ’.*Thesubsrciptionntforγindicatesthisshearstrainisspecificallydefinedfortheorientationofntaxis.Inotherwords,atthesamepoint,shearstrainisdifferentfordifferentorientation.*Theangleherearebothradian,sotheunitsofγisalsoradian.*γsimplydescribesthechangeintherightangle.Whenγispositive,indicatestheanglebecomessmaller,whilenegtiveγindicatingtheanglebecomeslarger.StresselementzxyNormalstress:σx

,

σy

and

σzTriaxialShearstress:τxy

,

τyz

and

τzxNormalstress:σxand

σyShearstress:τxy

BiaxialσyStrainUndeformedzxyΔzΔxΔyDeformedzxyπ/2Normalstrain:εx

,

εy

and

εzShearstrain:γxy

,

γyz

and

γzxγxyεx(1+εx)ΔxSimilarly,*foranundeformedparticlerepresentedbythiscubeelement,ithasthreelength,*ΔxΔxalongxdirection,*Δyalongydirectionand*Δzalongzdirection.*Andallanglesarerightangle.*Thedeformationofthisparticlecanalsobefullycharacterizedbysixstraincomponents,*threenormalstrain,εx,εyandεz,*thatdescibethesizechangealongx,yandzdirection,respectively,*andthreeshearstrain,γxy,γyzandγzx,*thatdescribetheanglechangewithinxyplane,yzplaneandzxplane,respectively.Notethat,strainsarerelatedtotheforcesactingonthecube,whichareknownasstress,normalstressorshearstress.Therefore,afterdeformation,thiselementhasanewsize,*forthelengthalongxdirection,theoriginallength

Δxchangedinto

(1+εx)multipliedbyΔx.Andnewlengthalongyandzdirectionscanbeobtainedsimilarly.Fortheanglechangesofthiselement,*withinthexyplane,theanglehalfπnowchangedintohalfπ-γxy.and

halfπ+γxy.γxyistheshear

strainassociatedwithxyplane.Andangleswithintheyzplaneandzxplanehavesimilarchanges.Example1:Determine①theaveragestrainalongab;②anglechangebetweeenlineabandad.250200adcba’0.025γLet’slookatexample1.itasksyoutodeterminetheaveragestrainalongabandanglechangebetweeenlineabandad.Forthefirstquestion,*fromthedefinitionofaveragestrain,itisequaltothefinallengthΔs‘-originallengthΔs,dividedbytheoriginallengthΔs.Therefore,*itequalstoa’b-ab,dividedbyab,*equalsto0.025dividedby200,*resultingin125times10tominus6.Forthesecondquestion,theanglechangebetweenadandab,*tha

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論