




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第06講2.3直線的交點(diǎn)坐標(biāo)與距離公式(2.3.1兩條直線的交點(diǎn)坐標(biāo)+2.3.2兩點(diǎn)間的距離公式+2.3.3點(diǎn)到直線的距離公式+2.3.4兩條平行線間的距離公式)課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握兩條直線的位置關(guān)系中的相交幾何意義,并能根據(jù)已知條件求出兩條直線的交點(diǎn)坐標(biāo),并能根據(jù)兩條直線相交的性質(zhì)求待定參數(shù)。②會(huì)求平面內(nèi)點(diǎn)與直線的距離,并能解決與距離有關(guān)的平面幾何問(wèn)題。③.會(huì)用兩點(diǎn)間的距離公式求平面內(nèi)兩點(diǎn)間的距離.。④能應(yīng)用公式求兩平行線間的距離,以此解決與平面距離有關(guān)的綜合問(wèn)題。1.會(huì)求兩條直線的交點(diǎn)坐標(biāo),通過(guò)兩條直線相交的性質(zhì),解決與直線相交有關(guān)的問(wèn)題;2.掌握利用向量法推導(dǎo)兩點(diǎn)間距離公式的方法,并能用兩點(diǎn)間距離公式求兩點(diǎn)間的距離,以及解決與平面距離相關(guān)的問(wèn)題;3.會(huì)用公式解決與點(diǎn)到直線距離有關(guān)的問(wèn)題,并能解決與之相關(guān)的綜合問(wèn)題;4.熟練應(yīng)用公式求平面內(nèi)兩平行線間的距離,以及與距離有關(guān)的參數(shù)的求解,能處理平面內(nèi)與距離有關(guān)的問(wèn)題.;知識(shí)點(diǎn)01:兩條直線的交點(diǎn)坐標(biāo)直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的公共點(diǎn)的坐標(biāo)與方程組SKIPIF1<0的解一一對(duì)應(yīng).SKIPIF1<0與SKIPIF1<0相交SKIPIF1<0方程組有唯一解,交點(diǎn)坐標(biāo)就是方程組的解;SKIPIF1<0與SKIPIF1<0平行SKIPIF1<0方程組無(wú)解;SKIPIF1<0與SKIPIF1<0重合SKIPIF1<0方程組有無(wú)數(shù)個(gè)解.【即學(xué)即練1】(2023·江蘇·高二假期作業(yè))分別判斷下列直線SKIPIF1<0與SKIPIF1<0是否相交.如果相交,求出交點(diǎn)的坐標(biāo).(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0.【答案】(1)相交,交點(diǎn)坐標(biāo)為SKIPIF1<0(2)不相交(3)不相交【詳解】(1)解方程組SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0相交,交點(diǎn)坐標(biāo)為SKIPIF1<0.(2)解方程組SKIPIF1<0,方程組無(wú)解,所以SKIPIF1<0與SKIPIF1<0無(wú)公共點(diǎn),即SKIPIF1<0與SKIPIF1<0不相交.(3)解方程組SKIPIF1<0,因?yàn)榉匠蘏KIPIF1<0可化為SKIPIF1<0,所以方程組有無(wú)數(shù)組解,所以SKIPIF1<0與SKIPIF1<0有無(wú)數(shù)個(gè)公共點(diǎn),即SKIPIF1<0與SKIPIF1<0不相交.知識(shí)點(diǎn)02:兩點(diǎn)間的距離平面上任意兩點(diǎn)SKIPIF1<0,SKIPIF1<0間的距離公式為SKIPIF1<0特別地,原點(diǎn)SKIPIF1<0與任一點(diǎn)SKIPIF1<0的距離SKIPIF1<0.【即學(xué)即練2】(2023·江蘇·高二假期作業(yè))已知點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0間的距離為SKIPIF1<0,則SKIPIF1<0________.【答案】9或SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故答案為:9或SKIPIF1<0.知識(shí)點(diǎn)03:點(diǎn)到直線的距離平面上任意一點(diǎn)SKIPIF1<0到直線SKIPIF1<0:SKIPIF1<0的距離SKIPIF1<0.【即學(xué)即練3】(2023春·上海青浦·高二統(tǒng)考期末)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為_(kāi)_________.【答案】SKIPIF1<0【詳解】由點(diǎn)到直線的距離公式,可得點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.故答案為:SKIPIF1<0.知識(shí)點(diǎn)04:兩條平行線間的距離一般地,兩條平行直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)間的距離SKIPIF1<0.【即學(xué)即練4】(2023秋·廣西河池·高二統(tǒng)考期末)已知直線SKIPIF1<0,SKIPIF1<0相互平行,則SKIPIF1<0、SKIPIF1<0之間的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)橹本€SKIPIF1<0,SKIPIF1<0相互平行,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0、SKIPIF1<0之間的距離SKIPIF1<0.故選:A.知識(shí)點(diǎn)05:對(duì)稱問(wèn)題1、點(diǎn)關(guān)于點(diǎn)對(duì)稱問(wèn)題(方法:中點(diǎn)坐標(biāo)公式)求點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0由:SKIPIF1<0SKIPIF1<0SKIPIF1<02、點(diǎn)關(guān)于直線對(duì)稱問(wèn)題(聯(lián)立兩個(gè)方程)求點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0:SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0①設(shè)SKIPIF1<0中點(diǎn)為SKIPIF1<0利用中點(diǎn)坐標(biāo)公式得SKIPIF1<0,將SKIPIF1<0代入直線SKIPIF1<0:SKIPIF1<0中;②SKIPIF1<0整理得:SKIPIF1<0【即學(xué)即練5】(2023秋·高二課時(shí)練習(xí))若點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0_________;SKIPIF1<0__________.【答案】42【詳解】依題意,直線SKIPIF1<0的斜率為SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)SKIPIF1<0,于是SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:4;23、直線關(guān)于點(diǎn)對(duì)稱問(wèn)題(求SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對(duì)稱直線SKIPIF1<0,則SKIPIF1<0)方法一:在直線SKIPIF1<0上找一點(diǎn)SKIPIF1<0,求點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的點(diǎn)SKIPIF1<0,根據(jù)SKIPIF1<0,再由點(diǎn)斜式求解;方法二:由SKIPIF1<0SKIPIF1<0,設(shè)出SKIPIF1<0的直線方程,由點(diǎn)SKIPIF1<0到兩直線的距離相等SKIPIF1<0求參數(shù).方法三:在直線SKIPIF1<0任意一點(diǎn)SKIPIF1<0,求該點(diǎn)關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的點(diǎn)SKIPIF1<0,則該點(diǎn)SKIPIF1<0在直線SKIPIF1<0上.【即學(xué)即練6】(2023·高二單元測(cè)試)直線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對(duì)稱直線方程是______.【答案】SKIPIF1<0【詳解】設(shè)對(duì)稱直線為SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0解這個(gè)方程得SKIPIF1<0(舍)或SKIPIF1<0.所以對(duì)稱直線SKIPIF1<0的方程中SKIPIF1<0.故答案為:SKIPIF1<0.4、直線關(guān)于直線對(duì)稱問(wèn)題4.1直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)相交,求SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱直線SKIPIF1<0①求出SKIPIF1<0與SKIPIF1<0的交點(diǎn)SKIPIF1<0②在SKIPIF1<0上任意取一點(diǎn)SKIPIF1<0(非SKIPIF1<0點(diǎn)),求出SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0③根據(jù)SKIPIF1<0,SKIPIF1<0兩點(diǎn)求出直線SKIPIF1<04.2直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)平行,求SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱直線SKIPIF1<0①SKIPIF1<0②在直線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,求點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,利用點(diǎn)斜式求直線SKIPIF1<0.【即學(xué)即練7】(2023·高二課時(shí)練習(xí))求直線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的直線SKIPIF1<0的方程.【答案】SKIPIF1<0【詳解】聯(lián)立兩直線方程SKIPIF1<0,解得SKIPIF1<0,即兩直線的交點(diǎn)為SKIPIF1<0,取直線SKIPIF1<0:SKIPIF1<0上一點(diǎn)SKIPIF1<0,設(shè)其關(guān)于直線SKIPIF1<0:SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,因?yàn)樗笾本€過(guò)SKIPIF1<0,SKIPIF1<0,方程為SKIPIF1<0,即SKIPIF1<0.【即學(xué)即練8】(2023春·上海寶山·高二上海市吳淞中學(xué)??计谥校┲本€SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的直線方程為_(kāi)_______【答案】SKIPIF1<0【詳解】設(shè)所求直線方程為SKIPIF1<0,且SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0間的距離為SKIPIF1<0,則直線SKIPIF1<0與直線SKIPIF1<0間的距離為SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,所以所求直線方程為SKIPIF1<0,故答案為:SKIPIF1<0.題型01求直線交點(diǎn)坐標(biāo)【典例1】(2023·江蘇·高二假期作業(yè))直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)坐標(biāo)是(
)A.(2,0) B.(2,1)C.(0,2) D.(1,2)【典例2】(2023秋·高二課時(shí)練習(xí))若直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)位于第一象限,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1】(2023秋·天津·高二校聯(lián)考期末)過(guò)直線SKIPIF1<0和SKIPIF1<0的交點(diǎn),且與直線SKIPIF1<0垂直的直線方程是(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·高二課時(shí)練習(xí))若直線SKIPIF1<0與直線SKIPIF1<0相交且交點(diǎn)在第二象限內(nèi),則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型02由方程組解的個(gè)數(shù)判斷直線的位置關(guān)系【典例1】(2023秋·高二課時(shí)練習(xí))判斷下列各對(duì)直線的位置關(guān)系.如果相交,求出交點(diǎn)坐標(biāo).(1)直線SKIPIF1<0;(2)直線SKIPIF1<0.【典例2】(2022·上?!じ呷龑n}練習(xí))若關(guān)于SKIPIF1<0、SKIPIF1<0的方程組SKIPIF1<0無(wú)解,則實(shí)數(shù)SKIPIF1<0________【變式1】(2022·高二課時(shí)練習(xí))若關(guān)于SKIPIF1<0的二元一次方程組SKIPIF1<0有無(wú)窮多組解,則SKIPIF1<0______.【變式2】(2022·高二課時(shí)練習(xí))關(guān)于SKIPIF1<0?SKIPIF1<0的二元一次方程組SKIPIF1<0有無(wú)窮多組解,則SKIPIF1<0與SKIPIF1<0的積是_____.題型03由直線交點(diǎn)的個(gè)數(shù)求參數(shù)【典例1】(2022秋·廣東廣州·高二廣州市第一一三中學(xué)??茧A段練習(xí))直線SKIPIF1<0與直線SKIPIF1<0相交,則實(shí)數(shù)SKIPIF1<0的值為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0且SKIPIF1<0【典例2】(2022·高二校聯(lián)考課時(shí)練習(xí))若關(guān)于SKIPIF1<0,SKIPIF1<0的方程組SKIPIF1<0有唯一解,則實(shí)數(shù)SKIPIF1<0滿足的條件是________.【典例3】(2022·高二校聯(lián)考課時(shí)練習(xí))已知三條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)若直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交于一點(diǎn),求實(shí)數(shù)SKIPIF1<0的值;(2)若直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能?chē)扇切?,求?shí)數(shù)SKIPIF1<0的值.【變式1】(2022·江蘇·高二專題練習(xí))若三條直線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0共有兩個(gè)交點(diǎn),則實(shí)數(shù)SKIPIF1<0的值為(
)A.1 B.-2 C.1或-2 D.-1【變式2】(2022·高二課時(shí)練習(xí))三條直線SKIPIF1<0?SKIPIF1<0?SKIPIF1<0有且只有兩個(gè)交點(diǎn),求實(shí)數(shù)SKIPIF1<0的值.題型04由直線的交點(diǎn)坐標(biāo)求參數(shù)【典例1】(2023秋·高一單元測(cè)試)若直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)在第四象限,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·高二課時(shí)練習(xí))若直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)在第一象限,則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.【變式1】(2023·江蘇·高二假期作業(yè))若三條直線SKIPIF1<0和SKIPIF1<0交于一點(diǎn),則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<0【變式2】(2023·江蘇·高二假期作業(yè))兩直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)在SKIPIF1<0軸上,則SKIPIF1<0的值是(
)A.-24 B.6 C.±6 D.24題型05三線圍成三角形問(wèn)題【典例1】(2023秋·高二課時(shí)練習(xí))使三條直線SKIPIF1<0不能?chē)扇切蔚膶?shí)數(shù)SKIPIF1<0的值最多有幾個(gè)(
)A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)【典例2】(2023·江蘇·高二假期作業(yè))若三條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0能構(gòu)成三角形,求SKIPIF1<0應(yīng)滿足的條件.
【變式1】(多選)(2023·全國(guó)·高二專題練習(xí))三條直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0構(gòu)成三角形,則SKIPIF1<0的值不能為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.-2【變式2】(2023秋·浙江寧波·高二期末)若三條直線SKIPIF1<0與SKIPIF1<0能?chē)梢粋€(gè)直角三角形,則SKIPIF1<0__________.題型06直線交點(diǎn)系方程及其應(yīng)用【典例1】(2023·江蘇·高二假期作業(yè))設(shè)直線SKIPIF1<0經(jīng)過(guò)SKIPIF1<0和SKIPIF1<0的交點(diǎn),且與兩坐標(biāo)軸圍成等腰直角三角形,則直線SKIPIF1<0的方程為_(kāi)__________.【典例2】(2022·高二課時(shí)練習(xí))已知兩直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)為SKIPIF1<0.求:(1)過(guò)點(diǎn)SKIPIF1<0與SKIPIF1<0的直線方程;(2)過(guò)點(diǎn)SKIPIF1<0且與直線SKIPIF1<0平行的直線方程.【變式1】(2022秋·高二課時(shí)練習(xí))過(guò)兩直線SKIPIF1<0和SKIPIF1<0的交點(diǎn)和原點(diǎn)的直線方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2022·高二單元測(cè)試)已知直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0).求證:直線SKIPIF1<0恒過(guò)定點(diǎn)SKIPIF1<0,并求點(diǎn)SKIPIF1<0的坐標(biāo).【變式3】(2022·高二課時(shí)練習(xí))直線SKIPIF1<0經(jīng)過(guò)直線SKIPIF1<0的交點(diǎn),且與坐標(biāo)軸圍成的三角形是等腰直角三角形,求直線SKIPIF1<0的方程.題型07求兩點(diǎn)間的距離公式【典例1】(2023·江蘇·高二假期作業(yè))已知SKIPIF1<0,SKIPIF1<0兩點(diǎn)分別在兩條互相垂直的直線SKIPIF1<0和SKIPIF1<0上,且SKIPIF1<0線段的中點(diǎn)為SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)為(
)A.11 B.10 C.9 D.8【典例2】(2023·全國(guó)·高三專題練習(xí))已知直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則SKIPIF1<0(
)A.10 B.13 C.16 D.20【變式1】(2023秋·高二課時(shí)練習(xí))已知SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,且SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·江蘇·高二假期作業(yè))直線SKIPIF1<0和直線SKIPIF1<0分別過(guò)定點(diǎn)SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0|________.【變式3】(2023·高三課時(shí)練習(xí))如圖,SKIPIF1<0是邊長(zhǎng)為1的正三角形,SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0上一點(diǎn),滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)度為_(kāi)__________.題型08距離公式的應(yīng)用【典例1】(2023春·江西·高三校聯(lián)考開(kāi)學(xué)考試)費(fèi)馬點(diǎn)是指三角形內(nèi)到三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn).當(dāng)三角形三個(gè)內(nèi)角均小于120°時(shí),費(fèi)馬點(diǎn)與三個(gè)頂點(diǎn)連線正好三等分費(fèi)馬點(diǎn)所在的周角,即該點(diǎn)所對(duì)的三角形三邊的張角相等且均為120°.根據(jù)以上性質(zhì),.則SKIPIF1<0的最小值為(
)A.4 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2022秋·福建·高二校聯(lián)考期中)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)形結(jié)合百般好,割裂分家萬(wàn)事休.”事實(shí)上,有很多代數(shù)問(wèn)題可以轉(zhuǎn)化為幾何問(wèn)題加以解決,如:SKIPIF1<0可以轉(zhuǎn)化為點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離,則SKIPIF1<0的最小值為(
).A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2022秋·甘肅嘉峪關(guān)·高二??计谥校┖瘮?shù)SKIPIF1<0的最小值是_____________.【變式1】(2023·全國(guó)·高三專題練習(xí))費(fèi)馬點(diǎn)是指三角形內(nèi)到三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn).當(dāng)三角形三個(gè)內(nèi)角均小于SKIPIF1<0時(shí),費(fèi)馬點(diǎn)與三個(gè)頂點(diǎn)連線正好三等分費(fèi)馬點(diǎn)所在的周角,即該點(diǎn)所對(duì)的三角形三邊的張角相等均為SKIPIF1<0.根據(jù)以上性質(zhì),SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2022秋·北京·高二北京工業(yè)大學(xué)附屬中學(xué)??计谥校┲麛?shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)無(wú)形時(shí)少直覺(jué),形少數(shù)時(shí)難入微.”事實(shí)上,有很多代數(shù)問(wèn)題可以轉(zhuǎn)化為幾何問(wèn)題加以解決,如:SKIPIF1<0可以轉(zhuǎn)化為平面上點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的距離.結(jié)合上述觀點(diǎn),可得SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023·江蘇·高二假期作業(yè))某同學(xué)在研究函數(shù)SKIPIF1<0的性質(zhì)時(shí),聯(lián)想到兩點(diǎn)間的距離公式,從而將函數(shù)變形為SKIPIF1<0,求得SKIPIF1<0的最小值為_(kāi)_______.題型09求點(diǎn)到直線的距離【典例1】(2023·重慶·高二統(tǒng)考學(xué)業(yè)考試)點(diǎn)(1,1)到直線SKIPIF1<0的距離是(
)A.1 B.2 C.SKIPIF1<0【典例2】(2023春·上海浦東新·高二統(tǒng)考期中)已知?jiǎng)狱c(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的最小值為_(kāi)________.【變式1】(2023春·貴州黔東南·高二??茧A段練習(xí))點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,SKIPIF1<0為原點(diǎn),則SKIPIF1<0的最小值是(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023春·遼寧·高二校聯(lián)考階段練習(xí))已知圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0到圓心SKIPIF1<0的距離的最小值為(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.1題型10已知點(diǎn)到直線的距離求參數(shù)【典例1】(2023秋·高二課時(shí)練習(xí))已知SKIPIF1<0到直線SKIPIF1<0的距離等于3,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·全國(guó)·高三專題練習(xí))已知直線SKIPIF1<0上存在一點(diǎn)SKIPIF1<0,滿足SKIPIF1<0,其中SKIPIF1<0為坐標(biāo)原點(diǎn).則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023春·河南南陽(yáng)·高二校聯(lián)考階段練習(xí))求滿足下列條件的直線SKIPIF1<0的一般式方程:(1)經(jīng)過(guò)直線SKIPIF1<0,SKIPIF1<0的交點(diǎn)SKIPIF1<0,且經(jīng)過(guò)點(diǎn)SKIPIF1<0;(2)與直線SKIPIF1<0垂直,且點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.【變式1】(2023秋·廣東廣州·高二統(tǒng)考期末)已知點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為1,則SKIPIF1<0的值為(
)ASKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或15C.5或SKIPIF1<0 D.5或15【變式2】(2023秋·浙江湖州·高二統(tǒng)考期末)已知點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為1,則SKIPIF1<0的值為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或15 C.5或SKIPIF1<0 D.5或15【變式3】(2023·江蘇·高二假期作業(yè))已知點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型11求點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)【典例1】(2023秋·四川遂寧·高二統(tǒng)考期末)已知點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023秋·上海長(zhǎng)寧·高二上海市延安中學(xué)??计谀┮阎猄KIPIF1<0,SKIPIF1<0兩點(diǎn)關(guān)于直線SKIPIF1<0對(duì)稱,則點(diǎn)SKIPIF1<0的坐標(biāo)為_(kāi)_____.【變式1】(2023·全國(guó)·高三對(duì)口高考)點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)的坐標(biāo)為_(kāi)________.【變式2】(2023·高二課時(shí)練習(xí))若點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的點(diǎn)是SKIPIF1<0,求SKIPIF1<0、SKIPIF1<0的值.題型12求到兩點(diǎn)距離相等的直線方程【典例1】(2023春·湖南長(zhǎng)沙·高二瀏陽(yáng)一中??奸_(kāi)學(xué)考試)已知SKIPIF1<0兩點(diǎn)到直線SKIPIF1<0的距離相等,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.2或SKIPIF1<0 D.2或SKIPIF1<0【典例2】(2023·高二課時(shí)練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離都等于2,求直線SKIPIF1<0的方程.【變式1】(2023·全國(guó)·高三對(duì)口高考)過(guò)點(diǎn)SKIPIF1<0且和SKIPIF1<0的距離相等的直線方程是_________.【變式2】(2023·高三課時(shí)練習(xí))已知點(diǎn)SKIPIF1<0,若直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,且SKIPIF1<0、SKIPIF1<0到直線SKIPIF1<0的距離相等,則直線SKIPIF1<0的方程為_(kāi)_____.題型13直線關(guān)于直線對(duì)稱【典例1】(2023春·湖北武漢·高二華中科技大學(xué)附屬中學(xué)??茧A段練習(xí))如果直線SKIPIF1<0與直線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,那么(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·全國(guó)·高三專題練習(xí))兩直線方程為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的直線方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023·高二課時(shí)練習(xí))如果直線SKIPIF1<0與直線SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,那么直線SKIPIF1<0的方程是______.【典例4】(2023·全國(guó)·高三專題練習(xí))直線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的直線方程是________.【變式1】(2023·全國(guó)·高三專題練習(xí))直線SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱的直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·全國(guó)·高三專題練習(xí))求直線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的直線方程(
)SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式3】(2023·高二課時(shí)練習(xí))如果直線SKIPIF1<0與直線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,那么SKIPIF1<0______,SKIPIF1<0______.【變式4】(2023·四川遂寧·統(tǒng)考模擬預(yù)測(cè))若直線SKIPIF1<0與SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則實(shí)數(shù)a=______.題型14平行線間的距離問(wèn)題【典例1】(2023秋·高二課時(shí)練習(xí))兩條平行直線SKIPIF1<0與SKIPIF1<0間的距離為(
)A.SKIPIF1<0 B.2 C.14 D.SKIPIF1<0【典例2】(2023春·河南周口·高二校聯(lián)考階段練習(xí))已知兩條直線SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,當(dāng)兩平行線距離最大時(shí),SKIPIF1<0(
)A.3 B.4 C.5 D.6【典例3】(2023秋·高一單元測(cè)試)若兩條平行直線SKIPIF1<0與SKIPIF1<0之間的距離是SKIPIF1<0,則SKIPIF1<0__________.【變式1】(2023春·河南南陽(yáng)·高二校聯(lián)考階段練習(xí))若平面內(nèi)兩條平行線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0間的距離為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0(
)A.2 B.-2或1 C.-1 D.-1或2【變式2】(2023·安徽黃山·屯溪一中??寄M預(yù)測(cè))若直線SKIPIF1<0與SKIPIF1<0之間的距離為SKIPIF1<0,則a的值為(
)A.4 B.SKIPIF1<0 C.4或SKIPIF1<0 D.8或SKIPIF1<0【變式3】(2023春·河南洛陽(yáng)·高二??茧A段練習(xí))兩條平行線SKIPIF1<0,SKIPIF1<0間的距離等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型15直線關(guān)于點(diǎn)對(duì)稱的直線【典例1】(2023·高二課時(shí)練習(xí))SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱的直線是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·全國(guó)·高三專題練習(xí))直線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的直線方程為(
)A.4x+3y-4=0 B.4x+3y-12=0C.4x-3y-4=0 D.4x-3y-12=0【典例3】(2023·高二課時(shí)練習(xí))直線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的直線方程是______.【變式1】(2023·全國(guó)·高三專題練習(xí))直線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的直線SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023秋·高二課時(shí)練習(xí))直線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的直線方程為_(kāi)_________.題型16將軍飲馬問(wèn)題【典例1】(2023·全國(guó)·高三專題練習(xí))唐代詩(shī)人李頎的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望烽火,黃昏飲馬傍交河”,詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題——“將軍飲馬”問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在的位置為SKIPIF1<0,若將軍從山腳下的點(diǎn)SKIPIF1<0處出發(fā),河岸線所在直線的方程為SKIPIF1<0,則“將軍飲馬”的最短總路程為(
)A.SKIPIF1<0 B.5 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·高二課時(shí)練習(xí))已知點(diǎn)SKIPIF1<0和SKIPIF1<0,在直線SKIPIF1<0上找一點(diǎn)SKIPIF1<0,使SKIPIF1<0最小,并求這個(gè)最小值.【變式1】(2023春·四川資陽(yáng)·高三四川省樂(lè)至中學(xué)??奸_(kāi)學(xué)考試)唐代詩(shī)人李頎的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望烽火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題—“將軍飲馬”問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在區(qū)域?yàn)镾KIPIF1<0,若將軍從點(diǎn)SKIPIF1<0處出發(fā),河岸線所在直線方程為SKIPIF1<0,并假定將軍只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),則“將軍飲馬”的最短總路程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023春·上海閔行·高二??茧A段練習(xí))函數(shù)SKIPIF1<0的值域?yàn)開(kāi)_________.A夯實(shí)基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實(shí)基礎(chǔ)一、單選題1.(2023·江蘇·高二假期作業(yè))已知點(diǎn)SKIPIF1<0,SKIPIF1<0,則A,B兩點(diǎn)的距離為(
)A.25 B.5C.4 D.SKIPIF1<02.(2023春·江蘇鎮(zhèn)江·高二統(tǒng)考期中)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0是(
)A.直角三角形 B.銳角三角形 C.鈍角三角形 D.等腰三角形3.(2023春·廣西玉林·高二統(tǒng)考期中)已知兩條直線SKIPIF1<0,SKIPIF1<0,則這兩條直線之間的距離為(
)A.2 B.3 C.5 D.104.(2023·全國(guó)·高三專題練習(xí))若點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為(
)A.2 B.3 C.SKIPIF1<0 D.45.(2023春·重慶南岸·高二重慶市第十一中學(xué)校??计谥校┮阎本€SKIPIF1<0:SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0:SKIPIF1<0距離的最大值是(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<06.(2023·貴州畢節(jié)·統(tǒng)考模擬預(yù)測(cè))直線SKIPIF1<0,直線SKIPIF1<0,下列說(shuō)法正確的是(
)A.SKIPIF1<0,使得SKIPIF1<0 B.SKIPIF1<0,使得SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0與SKIPIF1<0都相交 D.SKIPIF1<0,使得原點(diǎn)到SKIPIF1<0的距離為37.(2023·全國(guó)·高三專題練習(xí))十九世紀(jì)著名德國(guó)猶太人數(shù)學(xué)家赫爾曼閔可夫斯基給出了兩點(diǎn)SKIPIF1<0,SKIPIF1<0的曼哈頓距離為SKIPIF1<0.我們把到三角形三個(gè)頂點(diǎn)的曼哈頓距離相等的點(diǎn)叫“好點(diǎn)”,已知三角形SKIPIF1<0的三個(gè)頂點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的“好點(diǎn)”的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2023秋·廣東河源·高二龍川縣第一中學(xué)校考期末)過(guò)點(diǎn)SKIPIF1<0引直線,使SKIPIF1<0,SKIPIF1<0,兩點(diǎn)到直線的距離相等,則直線方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0二、多選題9.(2023春·江蘇鹽城·高二鹽城市大豐區(qū)南陽(yáng)中學(xué)??茧A段練習(xí))已知直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0(SKIPIF1<0),則(
)A.直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),兩直線SKIPIF1<0,SKIPIF1<0之間的距離為310.(2023秋·湖南長(zhǎng)沙·高二??计谀┤糁本€SKIPIF1<0不能構(gòu)成三角形,則SKIPIF1<0的取值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0三、填空題11.(2023·江蘇·高二假期作業(yè))已知定點(diǎn)SKIPIF1<0,若直線SKIPIF1<0上總存在點(diǎn)SKIPIF1<0,滿足條件SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為_(kāi)_______.12.(2023春·上海靜安·高二上海市新中高級(jí)中學(xué)??计谥校┕饩€沿著直線SKIPIF1<0射到直線SKIPIF1<0上,經(jīng)反射后沿著直線SKIPIF1<
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)防職業(yè)病教學(xué)課件
- 新生兒肺炎表現(xiàn)及預(yù)防
- 《電子產(chǎn)品制造技術(shù)》課件-第2章 印制電路板認(rèn)知
- 沖床維修培訓(xùn)
- 順利消防2023課件
- 項(xiàng)目現(xiàn)場(chǎng)安全課件
- 《道路勘測(cè)設(shè)計(jì)》課件-第三章 平面設(shè)計(jì)
- 音樂(lè)律動(dòng)介紹課件
- 汽車(chē)配套產(chǎn)業(yè)基地項(xiàng)目風(fēng)險(xiǎn)管理方案(范文)
- 城市污水管網(wǎng)建設(shè)工程投資估算方案(模板)
- 黑龍江齊齊哈爾市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版綜合練習(xí)(下學(xué)期)試卷及答案
- 《煤礦職業(yè)病危害防治》培訓(xùn)課件2025
- 光伏電站培訓(xùn)課件
- 社區(qū)網(wǎng)格員培訓(xùn)
- 店鋪多股東合同范例
- 東南大學(xué)版三基內(nèi)科
- 《餐廳服務(wù)禮儀培訓(xùn)》課件
- 精神科藏藥安全警示教育
- 2025年中國(guó)電信云網(wǎng)資源管理技能認(rèn)證考試題及答案
- 高中數(shù)學(xué)集合練習(xí)題160題-包含所有題型-附答案
- 《駱駝祥子》名著閱讀課件
評(píng)論
0/150
提交評(píng)論