版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
內(nèi)蒙古霍林郭勒市重點名校2024屆中考聯(lián)考數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結(jié)論是(
).A. B. C. D.2.一次函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,△ABC是等邊三角形,點P是三角形內(nèi)的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.34.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.5.如圖,A、B為⊙O上兩點,D為弧AB的中點,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.6.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)7.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應(yīng)值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側(cè)部分是上升的8.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC=()A.1 B.2 C.3 D.49.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑10.-的絕對值是()A.-4 B. C.4 D.0.4二、填空題(本大題共6個小題,每小題3分,共18分)11.一組“數(shù)值轉(zhuǎn)換機”按下面的程序計算,如果輸入的數(shù)是36,則輸出的結(jié)果為106,要使輸出的結(jié)果為127,則輸入的最小正整數(shù)是__________.12.桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個幾何體最多可以由___________個這樣的正方體組成.13.從正n邊形一個頂點引出的對角線將它分成了8個三角形,則它的每個內(nèi)角的度數(shù)是______.14.不等式2x-5<7-(x-5)的解集是______________.15.在今年的春節(jié)黃金周中,全國零售和餐飲企業(yè)實現(xiàn)銷售額約9260億元,比去年春節(jié)黃金周增長10.2%,將9260億用科學(xué)記數(shù)法表示為_____________.16.如圖,P是⊙O的直徑AB延長線上一點,PC切⊙O于點C,PC=6,BC:AC=1:2,則AB的長為_____.三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當(dāng)α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當(dāng)矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當(dāng)AE=EF時,連接AC,CF,求AC?CF的值.18.(8分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.(8分)在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.20.(8分)如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關(guān)系?請說明理由;若過O點的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關(guān)系成立嗎?請說明理由.21.(8分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當(dāng)與滿足什么關(guān)系時,四邊形是正方形?請說明理由.22.(10分)先化簡,再求值:,其中x滿足x2-2x-2=0.23.(12分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。24.學(xué)校決定在學(xué)生中開設(shè):A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?(2)請計算本項調(diào)查中喜歡“立定跳遠”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整.(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有2名男生,3名女生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表法求出剛好抽到不同性別學(xué)生的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】
根據(jù)平行線分線段成比例定理及相似三角形的判定與性質(zhì)進行分析可得出結(jié)論.【題目詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【題目點撥】考點:1.平行線分線段成比例;2.相似三角形的判定與性質(zhì).2、B【解題分析】
由二次函數(shù),可得函數(shù)圖像經(jīng)過一、三、四象限,所以不經(jīng)過第二象限【題目詳解】解:∵,∴函數(shù)圖象一定經(jīng)過一、三象限;又∵,函數(shù)與y軸交于y軸負半軸,
∴函數(shù)經(jīng)過一、三、四象限,不經(jīng)過第二象限故選B【題目點撥】此題考查一次函數(shù)的性質(zhì),要熟記一次函數(shù)的k、b對函數(shù)圖象位置的影響3、C【解題分析】
過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【題目詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【題目點撥】本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°.4、D【解題分析】
延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【題目詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【題目點撥】此題綜合運用了圓周角定理、直角三角形30°角的性質(zhì)、勾股定理,注意:作直徑構(gòu)造直角三角形是解決本題的關(guān)鍵.5、C【解題分析】
連接D為弧AB的中點,根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,根據(jù)全等三角形的性質(zhì)可得:即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則即可求出的值.【題目詳解】如圖:連接D為弧AB的中點,根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則故選C.【題目點撥】考查弧,弦之間的關(guān)系,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù)等,綜合性比較強,關(guān)鍵是構(gòu)造全等三角形.6、D【解題分析】
根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【題目詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【題目點撥】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.7、C【解題分析】當(dāng)x=-2時,y=0,
∴拋物線過(-2,0),
∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;
當(dāng)x=0時,y=6,
∴拋物線與y軸的交點坐標為(0,6),故B正確;
當(dāng)x=0和x=1時,y=6,
∴對稱軸為x=,故C錯誤;
當(dāng)x<時,y隨x的增大而增大,
∴拋物線在對稱軸左側(cè)部分是上升的,故D正確;
故選C.8、B【解題分析】
先利用三角函數(shù)計算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長.【題目詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【題目點撥】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).9、D【解題分析】
根據(jù)切線的判定,圓的知識,可得答案.【題目詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【題目點撥】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關(guān)鍵.10、B【解題分析】
直接用絕對值的意義求解.【題目詳解】?的絕對值是.故選B.【題目點撥】此題是絕對值題,掌握絕對值的意義是解本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、15【解題分析】
分析:設(shè)輸出結(jié)果為y,觀察圖形我們可以得出x和y的關(guān)系式為:,將y的值代入即可求得x的值.詳解:∵當(dāng)y=127時,解得:x=43;當(dāng)y=43時,解得:x=15;當(dāng)y=15時,解得不符合條件.則輸入的最小正整數(shù)是15.故答案為15.點睛:考查一元一次方程的應(yīng)用,熟練掌握一元一次方程的應(yīng)用是解題的關(guān)鍵.12、1【解題分析】
主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【題目詳解】易得第一層最多有9個正方體,第二層最多有4個正方體,所以此幾何體共有1個正方體.故答案為1.13、144°【解題分析】
根據(jù)多邊形內(nèi)角和公式計算即可.【題目詳解】解:由題知,這是一個10邊形,根據(jù)多邊形內(nèi)角和公式:每個內(nèi)角等于.故答案為:144°.【題目點撥】此題重點考察學(xué)生對多邊形內(nèi)角和公式的應(yīng)用,掌握計算公式是解題的關(guān)鍵.14、x<【解題分析】解:去括號得:2x-5<7-x+5,移項、合并得:3x<17,解得:x<.故答案為:x<.15、9.26×1011【解題分析】試題解析:9260億=9.26×1011故答案為:9.26×1011點睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于1時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負數(shù).16、1【解題分析】PC切⊙O于點C,則∠PCB=∠A,∠P=∠P,
∴△PCB∽△PAC,∴,∵BP=PC=3,
∴PC2=PB?PA,即36=3?PA,
∵PA=12
∴AB=12-3=1.故答案是:1.三、解答題(共8題,共72分)17、(1)DD′=1,A′F=4﹣;(2);(1).【解題分析】
(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉(zhuǎn)化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【題目詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.18、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣1.當(dāng)x=﹣時,原式=(﹣)2﹣1=3﹣1=﹣2.【解題分析】應(yīng)用整式的混合運算法則進行化簡,最后代入x值求值.19、(1)見解析;(2).【解題分析】
(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【題目詳解】(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為.【題目點撥】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點,能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.20、詳見解析.【解題分析】
(1)根據(jù)全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性質(zhì)得∠DAC=∠BCA,可證AD∥BC,根據(jù)平行線的性質(zhì)得出∠1=∠1;(1)(3)和(1)的證法完全一樣.先證△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,從而∠1=∠1.【題目詳解】證明:∠1與∠1相等.在△ADC與△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠1.②③圖形同理可證,△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,∠1=∠1.21、見解析【解題分析】
(1)由菱形的性質(zhì)得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【題目詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F(xiàn)分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當(dāng)AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【題目點撥】本題考查了全等三角形、菱形、正方形的性質(zhì),解題的關(guān)鍵是熟練的掌握菱形、正方形、全等三角形的性質(zhì).22、【解題分析】分析:先根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務(wù)包工合同范例
- 建材買賣門窗合同范例
- 工程物料采購合同范例
- 住建部住房合同模板
- 徐州造價咨詢合同范例
- 建材供應(yīng)合作合同范例
- 小冰袋原料采購合同范例
- 人工挖樁合同范例
- 哈密勞動合同范例
- 家具養(yǎng)護合同范例
- 2024年國家公務(wù)員考試《行測》真題卷(行政執(zhí)法)答案和解析
- 《陸上風(fēng)電場工程設(shè)計概算編制規(guī)定及費用標準》(NB-T 31011-2019)
- 貨運證明范本
- 冷庫工程施工質(zhì)量保證體系及質(zhì)量保證措施
- 幕墻使用、保養(yǎng)、維修說明書
- GB∕T 33014.2-2016 道路車輛 電氣電子部件對窄帶輻射電磁能的抗擾性試驗方法 第2部分:電波暗室法
- 數(shù)碼插畫課件新版]
- 八年級數(shù)學(xué)上冊期中考試試卷分析
- 毽球校本課程開發(fā)綱要
- 飛機試飛測試的現(xiàn)狀與對策
- 圖案—國外現(xiàn)代圖案ppt課件
評論
0/150
提交評論