2024屆貴州省桐梓縣市級(jí)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁(yè)
2024屆貴州省桐梓縣市級(jí)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁(yè)
2024屆貴州省桐梓縣市級(jí)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁(yè)
2024屆貴州省桐梓縣市級(jí)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁(yè)
2024屆貴州省桐梓縣市級(jí)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆貴州省桐梓縣市級(jí)名校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個(gè)標(biāo)志中,是軸對(duì)稱圖形的是()A. B. C. D.2.如圖,AB∥CD,AD與BC相交于點(diǎn)O,若∠A=50°10′,∠COD=100°,則∠C等于()A.30°10′ B.29°10′ C.29°50′ D.50°10′3.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.4.關(guān)于x的一元二次方程x2﹣2x+k+2=0有實(shí)數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.5.若分式方程無(wú)解,則a的值為()A.0 B.-1 C.0或-1 D.1或-16.如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,∠ACB的角平分線分別交AB,BD于M,N兩點(diǎn).若AM=2,則線段ON的長(zhǎng)為()A. B. C.1 D.7.甲、乙兩超市在1月至8月間的盈利情況統(tǒng)計(jì)圖如圖所示,下面結(jié)論不正確的是()A.甲超市的利潤(rùn)逐月減少B.乙超市的利潤(rùn)在1月至4月間逐月增加C.8月份兩家超市利潤(rùn)相同D.乙超市在9月份的利潤(rùn)必超過(guò)甲超市8.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長(zhǎng)為()A.6 B.8 C.10 D.129.小明解方程的過(guò)程如下,他的解答過(guò)程中從第()步開(kāi)始出現(xiàn)錯(cuò)誤.解:去分母,得1﹣(x﹣2)=1①去括號(hào),得1﹣x+2=1②合并同類項(xiàng),得﹣x+3=1③移項(xiàng),得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④10.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個(gè)幾何體只能是()A. B. C. D.11.一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球則兩次摸到的球的顏色不同的概率為()A. B. C. D.12.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣3二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.我國(guó)經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問(wèn)題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn)水深,葭長(zhǎng)各幾何?”題意是:有一正方形池塘,邊長(zhǎng)為一丈,有棵蘆葦長(zhǎng)在它的正中央,高出水面部分有一尺長(zhǎng),把蘆葦拉向岸邊,恰好碰到岸沿,問(wèn)水深和蘆葦長(zhǎng)各是多少?(小知識(shí):1丈=10尺)如果設(shè)水深為x尺,則蘆葦長(zhǎng)用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.14.菱形ABCD中,∠A=60°,AB=9,點(diǎn)P是菱形ABCD內(nèi)一點(diǎn),PB=PD=3,則AP的長(zhǎng)為_(kāi)____.15.如圖,在△ABC中,AB=AC,以點(diǎn)C為圓心,以CB長(zhǎng)為半徑作圓弧,交AC的延長(zhǎng)線于點(diǎn)D,連結(jié)BD,若∠A=32°,則∠CDB的大小為_(kāi)____度.16.如圖,已知正方形ABCD的邊長(zhǎng)為4,⊙B的半徑為2,點(diǎn)P是⊙B上的一個(gè)動(dòng)點(diǎn),則PD﹣PC的最大值為_(kāi)____.17.同時(shí)擲兩粒骰子,都是六點(diǎn)向上的概率是_____.18.一個(gè)不透明的口袋中有四個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為,隨機(jī)取出一個(gè)小球后不放回,再隨機(jī)取出一個(gè)小球,則兩次取出的小球標(biāo)號(hào)的和等于4的概率是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?0.(6分)如圖,小明今年國(guó)慶節(jié)到青城山游玩,乘坐纜車,當(dāng)?shù)巧嚼|車的吊箱經(jīng)過(guò)點(diǎn)A到達(dá)點(diǎn)B時(shí),它經(jīng)過(guò)了200m,纜車行駛的路線與水平夾角∠α=16°,當(dāng)纜車?yán)^續(xù)由點(diǎn)B到達(dá)點(diǎn)D時(shí),它又走過(guò)了200m,纜車由點(diǎn)B到點(diǎn)D的行駛路線與水平面夾角∠β=42°,求纜車從點(diǎn)A到點(diǎn)D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.(6分)計(jì)算:﹣3tan30°.22.(8分)為獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,某校準(zhǔn)備購(gòu)買一批文具袋和圓規(guī)作為獎(jiǎng)品,已知購(gòu)買1個(gè)文具袋和2個(gè)圓規(guī)需21元,購(gòu)買2個(gè)文具袋和3個(gè)圓規(guī)需39元。求文具袋和圓規(guī)的單價(jià)。學(xué)校準(zhǔn)備購(gòu)買文具袋20個(gè),圓規(guī)若干,文具店給出兩種優(yōu)惠方案:方案一:購(gòu)買一個(gè)文具袋還送1個(gè)圓規(guī)。方案二:購(gòu)買圓規(guī)10個(gè)以上時(shí),超出10個(gè)的部分按原價(jià)的八折優(yōu)惠,文具袋不打折.①設(shè)購(gòu)買面規(guī)m個(gè),則選擇方案一的總費(fèi)用為_(kāi)_____,選擇方案二的總費(fèi)用為_(kāi)_____.②若學(xué)校購(gòu)買圓規(guī)100個(gè),則選擇哪種方案更合算?請(qǐng)說(shuō)明理由.23.(8分)計(jì)算:+()-2-8sin60°24.(10分)如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).(1)求拋物線的解析式;(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.25.(10分)科研所計(jì)劃建一幢宿舍樓,因?yàn)榭蒲兴鶎?shí)驗(yàn)中會(huì)產(chǎn)生輻射,所以需要有兩項(xiàng)配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對(duì)宿含樓進(jìn)行防輻射處理;已知防輻射費(fèi)y萬(wàn)元與科研所到宿舍樓的距離xkm之間的關(guān)系式為y=ax+b(0≤x≤3).當(dāng)科研所到宿舍樓的距離為1km時(shí),防輻射費(fèi)用為720萬(wàn)元;當(dāng)科研所到宿含樓的距離為3km或大于3km時(shí),輻射影響忽略不計(jì),不進(jìn)行防輻射處理,設(shè)修路的費(fèi)用與x2成正比,且比例系數(shù)為m萬(wàn)元,配套工程費(fèi)w=防輻射費(fèi)+修路費(fèi).(1)當(dāng)科研所到宿舍樓的距離x=3km時(shí),防輻射費(fèi)y=____萬(wàn)元,a=____,b=____;(2)若m=90時(shí),求當(dāng)科研所到宿舍樓的距離為多少km時(shí),配套工程費(fèi)最少?(3)如果最低配套工程費(fèi)不超過(guò)675萬(wàn)元,且科研所到宿含樓的距離小于等于3km,求m的范圍?26.(12分)如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過(guò)點(diǎn)E作EC⊥OA于點(diǎn)C,過(guò)點(diǎn)B作⊙O的切線交CE的延長(zhǎng)線于點(diǎn)D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.27.(12分)我市某中學(xué)舉行“中國(guó)夢(mèng)?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】

根據(jù)軸對(duì)稱圖形的概念求解.如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸.【題目詳解】A、不是軸對(duì)稱圖形,故A不符合題意;B、不是軸對(duì)稱圖形,故B不符合題意;C、不是軸對(duì)稱圖形,故C不符合題意;D、是軸對(duì)稱圖形,故D符合題意.故選D.【題目點(diǎn)撥】本題主要考查軸對(duì)稱圖形的知識(shí)點(diǎn).確定軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.2、C【解題分析】

根據(jù)平行線性質(zhì)求出∠D,根據(jù)三角形的內(nèi)角和定理得出∠C=180°-∠D-∠COD,代入求出即可.【題目詳解】∵AB∥CD,∴∠D=∠A=50°10′,∵∠COD=100°,∴∠C=180°-∠D-∠COD=29°50′.故選C.【題目點(diǎn)撥】本題考查了三角形的內(nèi)角和定理和平行線的性質(zhì)的應(yīng)用,關(guān)鍵是求出∠D的度數(shù)和得出∠C=180°-∠D-∠COD.應(yīng)該掌握的是三角形的內(nèi)角和為180°.3、A【解題分析】解:連接OB、OC,連接AO并延長(zhǎng)交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點(diǎn)睛:本題考查的是三角形的外接圓與外心、扇形面積的計(jì)算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.4、C【解題分析】

由一元二次方程有實(shí)數(shù)根可知△≥0,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【題目詳解】∵關(guān)于x的一元二次方程x2?2x+k+2=0有實(shí)數(shù)根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數(shù)軸上表示為:故選C.【題目點(diǎn)撥】本題考查了一元二次方程根的判別式.根據(jù)一元二次方程根的情況利用根的判別式列出不等式是解題的關(guān)鍵.5、D【解題分析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當(dāng)1-a=0時(shí),即a=1,整式方程無(wú)解,當(dāng)x+1=0,即x=-1時(shí),分式方程無(wú)解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點(diǎn)睛:本題考查了分式方程的解,解決本題的關(guān)鍵是熟記分式方程無(wú)解的條件.6、C【解題分析】

作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計(jì)算出ON的長(zhǎng).【題目詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【題目點(diǎn)撥】本題考查了相似三角形的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過(guò)作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).7、D【解題分析】【分析】根據(jù)折線圖中各月的具體數(shù)據(jù)對(duì)四個(gè)選項(xiàng)逐一分析可得.【題目詳解】A、甲超市的利潤(rùn)逐月減少,此選項(xiàng)正確,不符合題意;B、乙超市的利潤(rùn)在1月至4月間逐月增加,此選項(xiàng)正確,不符合題意;C、8月份兩家超市利潤(rùn)相同,此選項(xiàng)正確,不符合題意;D、乙超市在9月份的利潤(rùn)不一定超過(guò)甲超市,此選項(xiàng)錯(cuò)誤,符合題意,故選D.【題目點(diǎn)撥】本題主要考查折線統(tǒng)計(jì)圖,折線圖是用一個(gè)單位表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點(diǎn),然后把各點(diǎn)用線段依次連接起來(lái).以折線的上升或下降來(lái)表示統(tǒng)計(jì)數(shù)量增減變化.8、C【解題分析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.9、A【解題分析】

根據(jù)解分式方程的方法可以判斷哪一步是錯(cuò)誤的,從而可以解答本題.【題目詳解】=1,去分母,得1-(x-2)=x,故①錯(cuò)誤,故選A.【題目點(diǎn)撥】本題考查解分式方程,解答本題的關(guān)鍵是明確解分式方程的方法.10、A【解題分析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項(xiàng)A正確,故選A.考點(diǎn):幾何體的三視圖11、B【解題分析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計(jì)算.【題目詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【題目點(diǎn)撥】掌握分類討論的方法是本題解題的關(guān)鍵.12、A【解題分析】

用-1加上1,求出比-1大1的是多少即可.【題目詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【題目點(diǎn)撥】本題考查了有理數(shù)加法的運(yùn)算,解題的關(guān)鍵是要熟練掌握:“先符號(hào),后絕對(duì)值”.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(x+1);.【解題分析】試題分析:設(shè)水深為x尺,則蘆葦長(zhǎng)用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點(diǎn):由實(shí)際問(wèn)題抽象出一元二次方程;勾股定理的應(yīng)用.14、3或6【解題分析】

分成P在OA上和P在OC上兩種情況進(jìn)行討論,根據(jù)△ABD是等邊三角形,即可求得OA的長(zhǎng)度,在直角△OBP中利用勾股定理求得OP的長(zhǎng),則AP即可求得.【題目詳解】設(shè)AC和BE相交于點(diǎn)O.當(dāng)P在OA上時(shí),∵AB=AD,∠A=60°,∴△ABD是等邊三角形,∴BD=AB=9,OB=OD=BD=.則AO=.在直角△OBP中,OP=.則AP=OA-OP-;當(dāng)P在OC上時(shí),AP=OA+OP=.故答案是:3或6.【題目點(diǎn)撥】本題考查了菱形的性質(zhì),注意到P在AC上,應(yīng)分兩種情況進(jìn)行討論是解題的關(guān)鍵.15、1【解題分析】

根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質(zhì)以及三角形外角的性質(zhì)在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【題目詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【題目點(diǎn)撥】本題主要考查等腰三角形的性質(zhì),三角形外角的性質(zhì),掌握等邊對(duì)等角是解題的關(guān)鍵,注意三角形內(nèi)角和定理的應(yīng)用.16、1【解題分析】分析:由PD?PC=PD?PG≤DG,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點(diǎn)G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG==1.故答案為1點(diǎn)睛:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建相似三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,把問(wèn)題轉(zhuǎn)化為兩點(diǎn)之間線段最短解決,題目比較難,屬于中考?jí)狠S題.17、.【解題分析】

同時(shí)擲兩粒骰子,一共有6×6=36種等可能情況,都是六點(diǎn)向上只有一種情況,按概率公式計(jì)算即可.【題目詳解】解:都是六點(diǎn)向上的概率是.【題目點(diǎn)撥】本題考查了概率公式的應(yīng)用.18、【解題分析】試題解析:畫樹(shù)狀圖得:由樹(shù)狀圖可知:所有可能情況有12種,其中兩次摸出的小球標(biāo)號(hào)的和等于4的占2種,所以其概率=,故答案為.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)試題解析;(2)90°.【解題分析】試題分析:(1)由兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩個(gè)三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對(duì)應(yīng)角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點(diǎn):相似三角形的判定與性質(zhì).20、纜車垂直上升了186m.【解題分析】

在Rt中,米,在Rt中,即可求出纜車從點(diǎn)A到點(diǎn)D垂直上升的距離.【題目詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應(yīng)該是BC+DF=186(米).答:纜車垂直上升了186米.【題目點(diǎn)撥】本題考查了解直角三角形的應(yīng)用-坡度坡角問(wèn)題,銳角三角函數(shù)的定義,結(jié)合圖形理解題意是解決問(wèn)題的關(guān)鍵.21、1.【解題分析】

直接利用零指數(shù)冪的性質(zhì)、絕對(duì)值的性質(zhì)和負(fù)整數(shù)指數(shù)冪的性質(zhì)及特殊角三角函數(shù)值分別化簡(jiǎn)得出答案.【題目詳解】﹣3tan30°=4+﹣1﹣1﹣3×=1.【題目點(diǎn)撥】此題主要考查了實(shí)數(shù)運(yùn)算及特殊角三角函數(shù)值,正確化簡(jiǎn)各數(shù)是解題關(guān)鍵.22、(1)文具袋的單價(jià)為15元,圓規(guī)單價(jià)為3元;(2)①方案一總費(fèi)用為元,方案二總費(fèi)用為元;②方案一更合算.【解題分析】

(1)設(shè)文具袋的單價(jià)為x元/個(gè),圓規(guī)的單價(jià)為y元/個(gè),根據(jù)“購(gòu)買1個(gè)文具袋和2個(gè)圓規(guī)需21元;購(gòu)買2個(gè)文具袋和3個(gè)圓規(guī)需39元”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

(2)根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合兩種優(yōu)惠方案,設(shè)購(gòu)買面規(guī)m個(gè),分別求出選擇方案一和選擇方案二所需費(fèi)用,然后代入m=100計(jì)算比較后即可得出結(jié)論.【題目詳解】(1)設(shè)文具袋的單價(jià)為x元,圓規(guī)單價(jià)為y元。由題意得解得答:文具袋的單價(jià)為15元,圓規(guī)單價(jià)為3元。(2)①設(shè)圓規(guī)m個(gè),則方案一總費(fèi)用為:元方案二總費(fèi)用元故答案為:元;②買圓規(guī)100個(gè)時(shí),方案一總費(fèi)用:元,方案二總費(fèi)用:元,∴方案一更合算?!绢}目點(diǎn)撥】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.23、4-2【解題分析】試題分析:原式第一項(xiàng)利用二次根式的化簡(jiǎn)公式進(jìn)行化簡(jiǎn),第二項(xiàng)利用負(fù)指數(shù)公式化簡(jiǎn),第三項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),合并即可得到結(jié)果試題解析:原式=2+4-8×=2+4-4=4-224、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點(diǎn)P(,﹣);(3)Q(4,1)或(-3,1).【解題分析】

(1)把點(diǎn)A,B的坐標(biāo)代入拋物線的解析式中,求b,c;(2)設(shè)P(m,m2?2m+1),根據(jù)S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據(jù)二次函數(shù)的性質(zhì)求解;(3)設(shè)Q(t,1),分別求出點(diǎn)A,B,C,P的坐標(biāo),求出AB,BC,CA;用含t的式子表示出PQ,CQ,判斷出∠BAC=∠PCA=45°,則要分兩種情況討論,根據(jù)相似三角形的對(duì)應(yīng)邊成比例求t.【題目詳解】解:(1)將A(0,1),B(9,10)代入函數(shù)解析式得:×81+9b+c=10,c=1,解得b=?2,c=1,所以拋物線的解析式y(tǒng)=x2?2x+1;(2)∵AC∥x軸,A(0,1),∴x2?2x+1=1,解得x1=6,x2=0(舍),即C點(diǎn)坐標(biāo)為(6,1),∵點(diǎn)A(0,1),點(diǎn)B(9,10),∴直線AB的解析式為y=x+1,設(shè)P(m,m2?2m+1),∴E(m,m+1),∴PE=m+1?(m2?2m+1)=?m2+3m.∵AC⊥PE,AC=6,∴S四邊形AECP=S△AEC+S△APC=AC?EF+AC?PF=AC?(EF+PF)=AC?EP=×6(?m2+3m)=?m2+9m.∵0<m<6,∴當(dāng)m=時(shí),四邊形AECP的面積最大值是,此時(shí)P();(3)∵y=x2?2x+1=(x?3)2?2,P(3,?2),PF=y(tǒng)F?yp=3,CF=xF?xC=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直線AC上存在滿足條件的點(diǎn)Q,設(shè)Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q為頂點(diǎn)的三角形與△ABC相似,①當(dāng)△CPQ∽△ABC時(shí),CQ:AC=CP:AB,(6?t):6=,解得t=4,所以Q(4,1);②當(dāng)△CQP∽△ABC時(shí),CQ:AB=CP:AC,(6?t)6,解得t=?3,所以Q(?3,1).綜上所述:當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上存在點(diǎn)Q,使得以C,P,Q為頂點(diǎn)的三角形與△ABC相似,Q點(diǎn)的坐標(biāo)為(4,1)或(?3,1).【題目點(diǎn)撥】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),平行于坐標(biāo)軸的直線上兩點(diǎn)間的距離是較大的坐標(biāo)減較小的坐標(biāo);解(3)的關(guān)鍵是利用相似三角形的性質(zhì)的出關(guān)于CQ的比例,要分類討論,以防遺漏.25、(1)0,﹣360,101;(2)當(dāng)距離為2公里時(shí),配套工程費(fèi)用最少;(3)0<m≤1.【解題分析】

(1)當(dāng)x=1時(shí),y=720,當(dāng)x=3時(shí),y=0,將x、y代入y=ax+b,即可求解;(2)根據(jù)題目:配套工程費(fèi)w=防輻射費(fèi)+修路費(fèi)分0≤x≤3和x≥3時(shí)討論.①當(dāng)0≤x≤3時(shí),配套工程費(fèi)W=90x2﹣360x+101,②當(dāng)x≥3時(shí),W=90x2,分別求最小值即可;(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其對(duì)稱軸x=,然后討論:x==3時(shí)和x=>3時(shí)兩種情況m取值即可求解.【題目詳解】解:(1)當(dāng)x=1時(shí),y=720,當(dāng)x=3時(shí),y=0,將x、y代入y=ax+b,解得:a=﹣360,b=101,故答案為0,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論