版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1
半導(dǎo)體物理與器件
2第一章緒論
——固體的晶格結(jié)構(gòu)§1.1半導(dǎo)體材料 典型半導(dǎo)體及分類§1.2固體類型 三種固體形態(tài)§1.3晶體的空間點(diǎn)陣結(jié)構(gòu) 晶體學(xué)基本概念和基本晶格結(jié)構(gòu)§1.4晶體中原子之間的價(jià)鍵 離子、原子、金屬及分子晶體§1.5晶體中的缺陷與雜質(zhì) 缺陷類型和雜質(zhì)類型§1.6半導(dǎo)體單晶材料的生長(zhǎng) 單晶材料及外延生長(zhǎng)§1.7小結(jié)3§1.1半導(dǎo)體材料半導(dǎo)體(semiconductor),顧名思義就是指導(dǎo)電性介於導(dǎo)體與絕緣體的物質(zhì)4半導(dǎo)體的基本特性電阻率介於10e-3~10e6Ω.cm,可變化區(qū)間大,介於金屬(10e-6Ω.cm)和絕緣體(10e12Ω.cm)之間純淨(jìng)半導(dǎo)體負(fù)溫度係數(shù),摻雜半導(dǎo)體在一定溫度區(qū)域出現(xiàn)正溫度係數(shù)不同摻雜類型的半導(dǎo)體做成pn結(jié)後,或是金屬與半導(dǎo)體接觸後,電流與電壓呈非線性關(guān)係,可以有整流效應(yīng)具有光敏性,用適當(dāng)波長(zhǎng)的光照射後,材料的電阻率會(huì)變化,即產(chǎn)生所謂光電導(dǎo)半導(dǎo)體中存在著電子與空穴兩種載流子5§1.1半導(dǎo)體材料元素半導(dǎo)體與化合物半導(dǎo)體6§1.1半導(dǎo)體材料構(gòu)成半導(dǎo)體材料的主要元素及其在週期表中的位置以四族元素對(duì)稱III-V族和II-VI化合物半導(dǎo)體氮化物?氧化物?I-VII7§1.2固體類型固體:處?kù)赌虪顟B(tài)下的物體,通常具有一定的形狀
和體積。按其內(nèi)部原子的排列情況可分為以下三種主
要的結(jié)構(gòu)類型,即單晶、多晶和非晶。
固體材料的三種主要結(jié)構(gòu)類型及其特征:
(1)單晶:長(zhǎng)程有序(整體有序,宏觀尺度,通常
包含整塊晶體材料,一般在毫米量級(jí)以上);
(2)多晶:長(zhǎng)程無(wú)序,短程有序(團(tuán)體有序,成百
上千個(gè)原子的尺度,每個(gè)晶粒的尺寸通常是在微米的
量級(jí));
(3)非晶(無(wú)定形):基本無(wú)序(局部、個(gè)體有序,僅限於微
觀尺度,通常包含幾個(gè)原子或分子的尺度,即納米量
級(jí),一般只有十幾埃至幾十埃的范圍)8§1.2固體類型單晶:長(zhǎng)程有序(整體有序,宏觀尺度,通常包含整塊晶體材料,一般在毫米量級(jí)以上);多晶:長(zhǎng)程無(wú)序,短程有序(團(tuán)體有序,成百上千個(gè)原子的尺度,每個(gè)晶粒的尺寸通常是在微米的量級(jí));非晶(無(wú)定形):基本無(wú)序(局部、個(gè)體有序,僅限於微觀尺度,通常包含幾個(gè)原子或分子的尺度,即納米量級(jí),一般只有十幾埃至幾十埃的範(fàn)圍)單晶有週期性非晶有週期性多晶短區(qū)域內(nèi)週期性9§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)
固體最終形成使系統(tǒng)的能量最小的結(jié)構(gòu)保持電中性(靜電能最小)使離子間的強(qiáng)烈排斥最小使原子盡可能的靠近滿足鍵的方向性
由於構(gòu)成晶體的粒子的不同性質(zhì),使得其空間的週期性排列也不相同;為了研究晶體的結(jié)構(gòu),將構(gòu)成晶體的粒子抽象為一個(gè)點(diǎn),這樣得到的空間點(diǎn)陣成為晶格10§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)晶格的週期性 晶格的週期性通常用原胞和基矢來(lái)描述。原胞:一個(gè)晶格最小的週期性單元原胞的選取不是唯一的;三維晶格的原胞通常是一個(gè)平行六面體11§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)晶胞:也稱為單胞,通常是以格點(diǎn)為頂點(diǎn)、以三個(gè)獨(dú)立方向上的週期為邊長(zhǎng)所構(gòu)成的平行六面體。它是晶體中的一個(gè)小的單元,可以用來(lái)不斷重複,從而得到整個(gè)晶體,通常能夠反映出整塊晶體所具有的對(duì)稱性相同點(diǎn)用來(lái)描述晶體中晶格週期性的最小重複單元不同點(diǎn):固體物理學(xué):原胞只強(qiáng)調(diào)晶格的週期性,其最小重複單元為原胞結(jié)晶學(xué):晶胞還要強(qiáng)調(diào)晶格中原子分佈的的對(duì)稱性。12§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)基矢:晶胞的三個(gè)相互獨(dú)立的邊向量。
如:簡(jiǎn)立方晶格的立方單元就是最小的週期性單元,通常就選取它為原胞,晶格基矢沿三個(gè)立方邊,長(zhǎng)短相等:13§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)立方晶系基本的晶體結(jié)構(gòu):
常見(jiàn)的三個(gè)基本的立方結(jié)構(gòu)及其晶格常數(shù),分別是
簡(jiǎn)單立方、體心立方和面心立方,立方體的邊長(zhǎng)即
為晶格常數(shù)。
(1)簡(jiǎn)單立方結(jié)構(gòu)(SC)
(2)體心立方結(jié)構(gòu)(BCC)
(3)面心立方結(jié)構(gòu)(FCC)14§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)15§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)16§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)17§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)晶向指數(shù)
晶體的一個(gè)基本特點(diǎn)是具有方向性,沿晶體的不同方面晶體的性質(zhì)不同。 晶格的格點(diǎn),可以看成分列在一系列相互平行的直線系上,這些直線系稱為晶列。◆同一個(gè)格子可以形成方向不同的晶列◆每一個(gè)晶列定義了一個(gè)方向,該方向稱為晶向◆晶向用晶向指數(shù)標(biāo)記18§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)◆晶向指數(shù)的確定:如果沿著某一晶向,從一個(gè)原子到最近的原子的位移向量為: ,則該晶向就用l1、l2、l3來(lái)標(biāo)誌,寫(xiě)成[l1
l2l3]。標(biāo)誌晶向的這組數(shù)稱為晶向指數(shù)。以簡(jiǎn)立方晶格為例19§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)
立方邊,面對(duì)角線,體對(duì)角線都不止一個(gè),它們的晶向指數(shù)確定方法和以上一樣,涉及到負(fù)值的指數(shù),按慣例,負(fù)值的指數(shù)用頭頂上加一橫來(lái)表示: 用<l1
l2l3>表示時(shí)代表所有的等效晶向。20§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)晶面:晶格的格點(diǎn)還可以看成分列在平行等距的平面系上,這樣的平面稱為晶面,21§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)晶面指數(shù)
具體討論晶體時(shí),常常要談及某些具體晶面,因此需要有一定的辦法標(biāo)誌不同的晶面,常用的是所謂密勒指數(shù)。 密勒指數(shù)可以這樣確定:在晶格中,選一格點(diǎn)為原點(diǎn),并以3個(gè)基矢a1、a2、a3
為坐標(biāo)軸建立坐標(biāo)系。該晶面族中任一晶面與3個(gè)坐標(biāo)軸交點(diǎn)的位矢分別為ra1、sa2、ta3,則它們的倒數(shù)連比可化為互質(zhì)的整數(shù),即
其中h、k、l為互質(zhì)的整數(shù),晶體學(xué)中以(hkl)來(lái)標(biāo)誌該晶面,稱為密勒指數(shù)。22§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)簡(jiǎn)立方格子中的重要晶面
側(cè)面(100)、對(duì)角面(110)、頂對(duì)角面(111)23§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)等效晶面
立方晶體中的立方體共有6個(gè)不同的側(cè)面,由於晶格的對(duì)稱性,晶體在這些晶面的性質(zhì)完全相同,統(tǒng)稱這些等效晶面時(shí),寫(xiě)成{100}; 對(duì)角面共有12個(gè),統(tǒng)稱這些對(duì)角面時(shí),寫(xiě)成{110}; 頂對(duì)角面共有8個(gè),統(tǒng)稱這些頂對(duì)角面時(shí),寫(xiě)成{111};24§1.3晶體的空間點(diǎn)陣結(jié)構(gòu)
金剛石結(jié)構(gòu)與閃鋅礦結(jié)構(gòu):
圖示為金剛石結(jié)構(gòu),鍺、矽單晶材料均為金剛石結(jié)構(gòu),它是由兩個(gè)面心立方結(jié)構(gòu)套構(gòu)形成。25當(dāng)Si原子形成晶體時(shí),原來(lái)在s軌道上的二個(gè)價(jià)電子,有一個(gè)被激發(fā)到了p軌道,形成s、px
、py
、pz四個(gè)軌道各有一個(gè)電子,然後它們?cè)佟盎旌稀逼饋?lái)重新組成四個(gè)等價(jià)軌道,這種軌道稱為SP3雜化軌道,這樣這四個(gè)電子,在四個(gè)新的等價(jià)軌道上,都成為未配對(duì)電子,而且它們的電子雲(yún)分佈基本上是單側(cè)地伸向四面體的四個(gè)頂角,當(dāng)原子結(jié)合成晶體時(shí),就依照電子雲(yún)重疊最多的角度,也就是四面體頂心這種角度進(jìn)行(109°28‘)。26當(dāng)原子結(jié)合成晶體時(shí),就依照電子雲(yún)重疊最多的角度,也就是四面體頂心這種角度進(jìn)行(109°28‘)。在III-Ⅴ族AIIIBⅤ)和Ⅱ-Ⅵ族(AⅡBⅥ)化合物半導(dǎo)體中,每對(duì)A,B原子,亦完成SP3雜化,然後,每個(gè)A原子與四周4個(gè)B原子形成正四面體,每個(gè)B原子同樣同四周4個(gè)A原子形成正四面體,如GaAs。從正四面體搭接方式看正四面體搭接時(shí)可以有兩種形式,稱為重合組態(tài)和交錯(cuò)組態(tài)。27閃鋅礦結(jié)構(gòu)是以交錯(cuò)組態(tài)的搭接方式構(gòu)成的,如果搭接成晶體的正四面體,頂、心原子相同時(shí),即元素半導(dǎo)體,搭接方式一定為閃鋅礦結(jié)構(gòu),此時(shí)稱之為金剛石結(jié)構(gòu);28金剛石結(jié)構(gòu)與閃鋅礦結(jié)構(gòu)的物理化學(xué)性質(zhì)解理面
金剛石結(jié)構(gòu)的解理面為{111}面。因?yàn)椋?11}面雙厚子層與雙原子層之間鍵的面密度最低,面間距最大,因而最容易斷開(kāi);如Si、Ge等元素半導(dǎo)體材料。任何兩個(gè)近鄰原子的連線都沿一個(gè)〈111〉方向。處?kù)端拿骟w頂點(diǎn)兩個(gè)原子的連線都沿一個(gè)〈110〉方向。四面體不共頂點(diǎn)的兩個(gè)棱的中心連線都沿一個(gè)〈100〉方向。29閃鋅礦的解理為{110}面相比之下,每個(gè){110}面都是由等量的A、B原子組成,面與面間沒(méi)有附加的庫(kù)侖作用,而且面間的鍵面密度較小,所以相比之下,比{111}面更容易打開(kāi),因而成為解理面;如GaAs、InP等化合物半導(dǎo)體材料。因?yàn)榻M成閃鋅礦的雙厚子層為不同的原子層,由於原子的電負(fù)性不同,電子雲(yún)會(huì)偏向電負(fù)性大的那一層原子,這樣分別由兩種不同原子構(gòu)成的面所形成的雙原子層就成為了一個(gè)電偶極層,偶極層之間的庫(kù)侖作用使得雙原子層間的結(jié)合加強(qiáng)。30化學(xué)腐蝕速度
◆對(duì)於金剛石結(jié)構(gòu),其化學(xué)腐蝕速度沿〈111〉、〈100〉、〈110〉依次變快。對(duì)於閃鋅礦結(jié)構(gòu),{111}面的兩端由不同原子構(gòu)成,導(dǎo)致兩端面性質(zhì)不同,導(dǎo)致在此方向的兩端面腐蝕速度不同。如GaAs,As面比Ga面更容易腐蝕;一般將電負(fù)性強(qiáng)的一面(As面)稱為()面,電負(fù)性弱的一面(Ga面)稱為(111)面。31§1.4晶體中原子之間的價(jià)鍵原子或分子結(jié)合形成晶體,最終達(dá)到平衡時(shí)系統(tǒng)的能量必須達(dá)到最低。
1.離子晶體:離子鍵(Ionicbonding),例如NaCl晶
體等;
2.共價(jià)晶體:共價(jià)鍵(Covalentbonding),例如
Si、Ge以及GaAs晶體等;
3.金屬晶體:金屬鍵(Metallicbonding),例如
Li、Na、K、Be、Mg以及Fe、Cu、Au、Ag等;
4.分子晶體:範(fàn)德華鍵(VanderWaalsbonding),
例如惰性元素氖、氬、氪、氙等在低溫下則形成分
子晶體,HF分子之間在低溫下也通過(guò)範(fàn)德華鍵形成
分子晶體。32矽材料中共價(jià)鍵形成示意圖33§1.5晶體中的缺陷與雜質(zhì)
理想單晶材料中不含任何缺陷與雜質(zhì),且晶體中的原子都處?kù)毒Ц裰械钠胶馕恢?,?shí)際的晶體材料並非如此理想和完美無(wú)缺,存在晶格的熱振動(dòng)。
一、點(diǎn)缺陷 分為空位,間隙原子及雜質(zhì) 空位與間隙原子 由於晶格熱振動(dòng),而且振動(dòng)能量存在漲落總有一部分原子的熱運(yùn)動(dòng)能量大到能克服其所在位置的熱能,脫離格點(diǎn)的位置,使格點(diǎn)處出現(xiàn)空位,離開(kāi)正常格點(diǎn)位置的原子可能落入晶格間隙之中,成為自間隙原子,形成弗侖克爾缺陷;或移動(dòng)到晶體表面,形成肖特基缺陷;若表面原子進(jìn)入晶體內(nèi)部晶格,則形成單獨(dú)的間隙原子。34反結(jié)構(gòu)缺陷對(duì)於化合物半導(dǎo)體存在一種反結(jié)構(gòu)缺陷,即應(yīng)該是A原子的格點(diǎn)上為B原子所佔(zhàn)據(jù),應(yīng)為B原子的格點(diǎn)為A原子所據(jù)。35雜質(zhì)晶體中與本體原子不同的元素的原子均稱為雜質(zhì)?!魜?lái)源:有可能是材料製備或器件製造工藝過(guò)程中的沾汙,也有可能來(lái)源於人為的引入,用以控制其電學(xué)及其它特性?!綦s質(zhì)在半導(dǎo)體中存在方式:間隙式和替位式。間隙式雜質(zhì):位於本體原子晶格間隙中,這類雜質(zhì)原子半徑較小,如H、Li36替位式雜質(zhì):取代本體原子位置,處?kù)毒Ц顸c(diǎn)上;這類雜質(zhì)原子價(jià)電子殼層結(jié)構(gòu)接近本體原子,如Ⅲ、Ⅴ族在Si、Ge(Ⅵ族)中的情況;Ⅱ、Ⅵ族在Ⅲ-Ⅴ化合物中。37◆雜質(zhì)原子啟動(dòng):人為引入的雜質(zhì)原子,只有處?kù)短嫖皇綍r(shí),才能啟動(dòng),起到改變和控制半導(dǎo)體材料導(dǎo)電性的作用。例如Ⅲ,Ⅴ族元素原子摻入Si、Ge中,多以替位式存在。38晶體中引入雜質(zhì)的方法稱為摻雜(Doping),摻雜的方法可分為:
(1)高溫?cái)U(kuò)散摻雜(hightemperaturediffusion)
(2)離子注入摻雜(Ionimplantation);
當(dāng)雜質(zhì)存在濃度梯度時(shí),雜質(zhì)要發(fā)生擴(kuò)散,擴(kuò)散強(qiáng)度與濃度梯度,溫度,晶格尺寸密切有關(guān)。實(shí)驗(yàn)證明,擴(kuò)散流密度J與雜質(zhì)濃度梯度?N/?x成正比,有比例係數(shù)D稱為擴(kuò)散係數(shù),分析表明:W為雜質(zhì)原子移動(dòng)一個(gè)晶格位置需要的能量,與晶格常數(shù)有關(guān)??梢钥吹剑瑪U(kuò)散係數(shù)和溫度T呈指數(shù)關(guān)係,因而通常擴(kuò)散工藝總是在高溫下進(jìn)行(700℃-1200℃),以節(jié)約擴(kuò)散時(shí)間。39二、線缺陷指位錯(cuò),分為兩類,刃位錯(cuò)和螺位錯(cuò)刃位錯(cuò)、螺位錯(cuò)與混合位錯(cuò)
◆刃位錯(cuò)40◆螺位錯(cuò)41三、面缺陷主要指層錯(cuò)層錯(cuò)42§1.6半導(dǎo)體單晶材料的生長(zhǎng)
矽單晶材料可以說(shuō)是目前純度最高的一種材料,
其純度已達(dá)到百億分之一。生長(zhǎng)半導(dǎo)體單晶材料的方法主要有以下幾種:
1.熔體生長(zhǎng)法:又稱為切克勞斯基(Czochralski)生長(zhǎng)方法,或CZ法。籽晶直拉法。
進(jìn)一步採(cǎi)用區(qū)熔再結(jié)晶方法提純:
43籽晶直拉法示意圖44實(shí)際拉制出的12英寸矽單晶錠
該矽單晶錠長(zhǎng)1米,直徑300毫米,重量達(dá)140千克
45將矽單晶錠切割成矽晶園片的切片機(jī)46工作人員利
用卡塞(Cassette)
裝載的300毫米矽
晶園片
472.外延層生長(zhǎng)法:
外延生長(zhǎng)方法按照材料的類型可分為以下兩大類:
(1)同質(zhì)外延(homoepitaxy);
(2)異質(zhì)外延(heteroepitaxy);
常用的外延方法有:
(1)化學(xué)氣相澱積法(CVD):也稱為氣相外延法(VPE)
SiCl4+2H2→Si+4HCl
(2)液相外延法(LPE):
溫度低於CZ法,常用於化合物半導(dǎo)體材料的外延。
(3)分子束外延法(MBE):
高真空,400至800℃,可精確控制。48氣相外延法(VPE)示意圖49分子束外延(MBE)設(shè)備原理示意圖50實(shí)際的MBE設(shè)備51量子力學(xué)初步量子力學(xué)的基本原理能量量子化光子能量E=hν波粒二相性德布羅意物質(zhì)波戴維遜-革末電子散射實(shí)驗(yàn)不確定性原理52薛定諤波動(dòng)方程一維非相對(duì)論性薛定諤波動(dòng)方程一維定態(tài)薛定諤方程53波函數(shù)的物理意義波函數(shù)用以描述粒子或系統(tǒng)的狀態(tài),本身是一個(gè)復(fù)函數(shù),因而不具有物理意義波函數(shù)的模方是概率密度函數(shù)概率密度函數(shù)代表在空間中某一點(diǎn)發(fā)現(xiàn)粒子的概率。在量子力學(xué)中,我們無(wú)法精確確定一個(gè)電子的位置,而只能確定在某處或某個(gè)區(qū)域內(nèi)電子存在的概率是多少。54關(guān)於單電子原子的三個(gè)重要結(jié)論:
1、對(duì)應(yīng)簡(jiǎn)單勢(shì)函數(shù)的薛定諤波動(dòng)方程解引出的電
子概率函數(shù)。
2、束縛電子能級(jí)量子化。
3、由分離變數(shù)法引出量子數(shù)和量子態(tài)概念。 n=1,2,3,......,
l=n-1,n-2,n-3,......,3,2,1,0
|m|=l,l-1,l-2,......,2,1,0
55§3.1固體的能帶理論能帶理論是研究固體中電子運(yùn)動(dòng)的一個(gè)主要理論基礎(chǔ)能帶理論是單電子近似的理論把每個(gè)電子的運(yùn)動(dòng)看成是獨(dú)立的在一個(gè)等效勢(shì)場(chǎng)中的運(yùn)動(dòng)。(哈特裏-??俗郧?chǎng)方法)通過(guò)能帶理論理解K空間能帶圖電子、空穴金屬、絕緣體、半導(dǎo)體56電子共有化運(yùn)動(dòng) 原子中的電子在原子核的勢(shì)場(chǎng)和其他電子的作用下,分列在不同的能級(jí)上,形成所謂電子殼層不同殼層的電子分別用1s;2s,2p;3s,3p,3d;4s…等符號(hào)表示,每一殼層對(duì)應(yīng)於確定的能量。當(dāng)原子相互接近形成晶體時(shí),不同原子的內(nèi)外各電子殼層之間就有了一定程度的交疊,相鄰原子最外殼層交疊最多,內(nèi)殼層交疊較少。57原子組成晶體後,由於電子殼層的交疊,電子不再完全局限在某一個(gè)原子上,可以由一個(gè)原於轉(zhuǎn)移到相鄰的原子上去,因而,電子將可以在整個(gè)晶體中運(yùn)動(dòng)。這種運(yùn)動(dòng)稱為電子的共有化運(yùn)動(dòng)注意:各原子中相似殼層上的電子才有相同的能量,電子只能在相似殼層間轉(zhuǎn)移。共有化運(yùn)動(dòng)的產(chǎn)生是由於不同原子的相似殼層的交疊,如圖所示58能帶的形成
原子靠近→電子雲(yún)發(fā)生重疊→電子之間存在相互作用→分立的能級(jí)發(fā)生分裂。從另外一方面來(lái)說(shuō),這也是泡利不相容原理所要求的。
氫原子的電子雲(yún)徑向密度分佈,當(dāng)兩個(gè)原子靠近之後,二者的電子雲(yún)發(fā)生重疊,此時(shí)兩個(gè)不同原子的電子之間產(chǎn)生相互作用,導(dǎo)致原來(lái)相同的兩個(gè)1s能級(jí)就會(huì)發(fā)生分裂,變成兩個(gè)離散的能級(jí)。當(dāng)大量的原子組成晶體材料時(shí),也會(huì)出現(xiàn)類似的情況。原來(lái)大量簡(jiǎn)並的量子化能級(jí)將會(huì)分裂為一系列離散化的密集能級(jí),從而形成一個(gè)帶狀的允許能級(jí)。稱為允帶。59
如圖所示為大量相同的原子靠得很近形成晶體材料之後,原來(lái)相同的電子能級(jí)就會(huì)發(fā)生分裂,變成一系列離散的能級(jí),這些離散的能級(jí)形成能帶,其中的r0代表平衡狀態(tài)下晶體中的原子間距。
從上一章的內(nèi)容中我們知道,晶體中的原子體密度在1022cm-3的量級(jí)。那麼1mm3內(nèi)就有1019個(gè)原子。簡(jiǎn)化假設(shè)為單電子原子,則其中有1019個(gè)電子分佈在同一個(gè)能帶上,假定該能帶的寬度為1eV,則能帶中分立能級(jí)的平均寬度就為1×10-19eV。P.43例3.1的結(jié)果直觀地說(shuō)明了這個(gè)能量間隔是多麼的小r060
實(shí)際的晶體中,每個(gè)原子包含不止一個(gè)電子。以3殼層原子為例,當(dāng)隨著原子距離的縮減,最外層電子首先相互作用導(dǎo)致n=3的能級(jí)分裂。進(jìn)一步縮減距離導(dǎo)致次外層和內(nèi)層原子也分裂成能帶。
假定最終的平衡位置在r0,則處?kù)对撓到y(tǒng)中的電子就處?kù)兑粋€(gè)被禁帶所隔開(kāi)的兩個(gè)能帶中。61 s能級(jí)(l=0,ml=0,ms=±1/2),2度簡(jiǎn)並,交疊後分裂為2N個(gè)能級(jí);p能級(jí)(l=1,ml=0,1,ms=±1/2)6度簡(jiǎn)並,交疊後分裂為6N個(gè)能級(jí),d能級(jí)(l=2,ml=0,1,2,ms=±1/2),交疊後分裂為10N個(gè)能級(jí)允帶{能帶原子能級(jí){禁帶{禁帶原子軌道原子能級(jí)分裂為能帶的示意圖dps能量E62
實(shí)際晶體的能帶分裂還會(huì)複雜很多。圖為Si原子電子系統(tǒng)示意圖。對(duì)於n=3的外層價(jià)電子來(lái)說(shuō),其中兩個(gè)分佈在能量較低的s軌道上,而可容納6個(gè)電子的p軌道上有兩個(gè)電子。P軌道:六個(gè)量子態(tài)S軌道:兩個(gè)量子態(tài)63大量矽原子形成矽晶體的電子能級(jí)分裂示意圖64
定性理論(物理概念):晶體中原子之間的相互作用(泡利不相容原理),使能級(jí)分裂形成能帶。 定量理論(量子力學(xué)計(jì)算):電子在週期場(chǎng)中運(yùn)動(dòng),其能量不連續(xù)成能帶。自由電子的運(yùn)動(dòng)晶體中電子的運(yùn)動(dòng)與孤立原子的電子、自由電子的運(yùn)動(dòng)不同:孤立原子中的電子是在該原子的核和其他電子的勢(shì)場(chǎng)中運(yùn)動(dòng)自由電子是在恒定為零的勢(shì)場(chǎng)中運(yùn)動(dòng)晶體中的電子是在嚴(yán)格週期性重複排列的原子間運(yùn)動(dòng),單電子近似認(rèn)為,晶體中的某一個(gè)電子是在週期性排列且固定不動(dòng)的原子核的勢(shì)場(chǎng)以及其他大量電子的平均勢(shì)場(chǎng)中運(yùn)動(dòng),這個(gè)勢(shì)場(chǎng)也是週期性變化的,而且它的週期與晶格週期相同。65自由電子的運(yùn)動(dòng)狀態(tài)對(duì)於波矢為k的運(yùn)動(dòng)狀態(tài),自由電子的能量E,動(dòng)量p,速度v均有確定的數(shù)值。波矢k可用以描述自由電子的運(yùn)動(dòng)狀態(tài),不同的k值標(biāo)誌自由電子的不同狀態(tài)自由電子的E和k的關(guān)係曲線,呈拋物線形狀。由於波矢k的連續(xù)變化,自由電子的能量是連續(xù)能譜,從零到無(wú)限大的所有能量值都是允許的。66xva晶體的週期性勢(shì)場(chǎng)
電子在週期性的晶格原子勢(shì)場(chǎng)中,產(chǎn)生電子共有化運(yùn)動(dòng)並導(dǎo)致能級(jí)分裂67電子在週期場(chǎng)中的運(yùn)動(dòng)
晶體中的電子運(yùn)動(dòng)服從布洛赫定理:週期性勢(shì)場(chǎng)中的波函數(shù)是一個(gè)平面波與一個(gè)週期函數(shù)的乘積。該週期與勢(shì)場(chǎng)週期相同晶體中的電子是以調(diào)幅平面波在晶體中傳播。這個(gè)波函數(shù)稱為布洛赫電子波函數(shù)。分佈幾率是晶格的週期函數(shù),但對(duì)每個(gè)原胞的相應(yīng)位置,電子的分佈幾率一樣的。波矢k描述晶體中電子的共有化運(yùn)動(dòng)狀態(tài)。ikrkkeru)(=y68
通過(guò)布洛赫定理,我們僅僅知道了晶體中電子波函數(shù)是調(diào)幅平面波,但其具體的E-k形式還要通過(guò)進(jìn)一步求解薛定諤方程來(lái)得到。 近自由電子近似將電子看成是位於勢(shì)阱中的近自由電子,而把週期性勢(shì)場(chǎng)作為微擾,這樣對(duì)於一維情況得到:
在 處,由於簡(jiǎn)並微擾,能帶分裂,形成一系列的禁帶、允帶,又由於週期性邊界條件玻恩一卡爾曼條件,只能取一些不連續(xù)的點(diǎn),這樣晶體中的電子只能處在允帶中的一系列能級(jí)上。69能量不連續(xù),形成允帶和禁帶。允帶出現(xiàn)在以下幾個(gè)區(qū)(布裏淵區(qū))中:第一布裏淵區(qū)第二布裏淵區(qū)第三布裏淵區(qū)布裏淵區(qū)與能帶
70-π/aE(k)0π/ak}允帶}允帶}允帶自由電子簡(jiǎn)約布裏淵區(qū)
由於E(k)具有對(duì)稱性、週期性,因而可以把其他布裏淵區(qū)中的E~k曲線通過(guò)平移整數(shù)個(gè)2π/a而放到第一布裏淵區(qū)內(nèi),從而構(gòu)成簡(jiǎn)約布裏淵區(qū),相應(yīng),其中的波矢k稱為簡(jiǎn)約波矢。
這樣一來(lái),我們要標(biāo)誌一個(gè)狀態(tài)需要標(biāo)明:(1)屬於哪一個(gè)帶;(2)它的簡(jiǎn)約波矢k等於什麼71關(guān)於能帶有以下結(jié)論:一個(gè)能帶只能有N個(gè)允許的狀態(tài);考慮電子有兩種自旋狀態(tài),故一個(gè)能帶能容納2N個(gè)電子;對(duì)於複式格子,每個(gè)能帶允許的電子數(shù)還要乘上原胞內(nèi)的原子個(gè)數(shù);對(duì)於簡(jiǎn)並能帶,狀態(tài)總數(shù)要乘以簡(jiǎn)並度。72以Si為例:Si晶體每個(gè)原胞中包含2個(gè)Si原子(是複式格子,由兩套面心立方晶格,沿對(duì)角線方向錯(cuò)開(kāi)1/4對(duì)角線長(zhǎng)而形成);假定一塊晶體由N個(gè)原胞構(gòu)成,則這一塊晶體中有2N個(gè)原子;晶體共有8N個(gè)價(jià)電子(每個(gè)Si原子外層有4個(gè)價(jià)電子);晶體的每個(gè)能帶有2N個(gè)允許態(tài);形成晶體時(shí),進(jìn)行SP3雜化,每個(gè)Si原子形成了4個(gè)等價(jià)的SP3軌道,原子間形成共價(jià)鍵時(shí),其中的2個(gè)等價(jià)(2度簡(jiǎn)並)的軌道為電子所佔(zhàn)據(jù),成為成鍵態(tài);另外的2個(gè)等價(jià)(2度簡(jiǎn)並)的軌道沒(méi)有電子所佔(zhàn)據(jù),成為反鍵態(tài);成鍵態(tài)能量低於反鍵態(tài);2度簡(jiǎn)並的成鍵態(tài)形成的能帶,共有4N(=2N×2)個(gè)允許態(tài),能容納8N個(gè)電子,此能帶形成了價(jià)帶。732度簡(jiǎn)並的反鍵態(tài)形成的能帶,共有4N(=2N×2)個(gè)允許態(tài),也能容納8N個(gè)電子,此能帶形成了導(dǎo)帶。因成鍵態(tài)能量低於反鍵態(tài),相應(yīng)的價(jià)帶能級(jí)底於導(dǎo)帶,導(dǎo)帶位於價(jià)帶之上;在0K時(shí),8N個(gè)價(jià)電子正好填充了4N個(gè)價(jià)帶能級(jí),價(jià)帶成為滿帶而導(dǎo)帶是空帶,不導(dǎo)電;室溫下,一部分價(jià)帶電子躍遷到導(dǎo)帶,這樣兩帶均成為不滿帶而導(dǎo)電。74§3.2固體中電的傳導(dǎo) 固體中的電傳導(dǎo)與能帶理論有關(guān)。能帶和鍵模型T=0K時(shí),單晶矽晶格的共價(jià)鍵的二維示意圖75
溫度升高時(shí),共價(jià)鍵中的個(gè)別電子可能會(huì)獲得足夠大的能量,從而克服共價(jià)鍵的束縛,進(jìn)入導(dǎo)帶。ECEV導(dǎo)帶價(jià)帶E76
由能帶的對(duì)稱性知道,電子佔(zhàn)據(jù)狀態(tài)和狀態(tài)的幾率是相同的。能帶的填充晶體中電子布洛赫波波矢的量子化,以及E~k關(guān)係說(shuō)明了晶體中的電子可以存在的狀態(tài),即能帶中一系列分立的能級(jí)。大量的電子在大量能級(jí)上的填充情況是由統(tǒng)計(jì)規(guī)律描述的,某一能級(jí)被電子佔(zhàn)據(jù)的幾率與其能量E值密切相關(guān),一般來(lái)講,能級(jí)越低,被電子佔(zhàn)據(jù)的可能性越大。77
無(wú)外電場(chǎng)時(shí),電子對(duì)稱地分佈在k和-k狀態(tài),k狀態(tài)和-k狀態(tài)的電子的共有化速度是大小相等、方向相反的; 也就是說(shuō),有一個(gè)電子沿正方向運(yùn)動(dòng),就有一個(gè)電子沿相反方向以同樣大小的速度運(yùn)動(dòng),這樣一來(lái),宏觀上沒(méi)有電流存在。78外電場(chǎng)下能帶的填充若存在電場(chǎng),電子在此電場(chǎng)中受力,則電子的波矢將要發(fā)生變化,即。對(duì)於滿帶,電子波矢的變化,宏觀上不改變電子在能帶中分布,沒(méi)有宏觀上電流產(chǎn)生;對(duì)於未滿帶,電子波矢的變化,宏觀上改變了電子在能帶中對(duì)稱分佈,並在宏觀上產(chǎn)生電流;79有效品質(zhì) 考慮自由電子的E~k關(guān)係。能量E對(duì)k的一階導(dǎo)數(shù)與粒子速度v有關(guān)能量E對(duì)k的二階導(dǎo)數(shù)與粒子品質(zhì)有關(guān)。 80
晶體中電子的運(yùn)動(dòng)狀態(tài)要比自由電子複雜得多,要得到E(k)運(yùn)算式很困難。 可採(cǎi)用級(jí)數(shù)展開(kāi)的方法研究帶底或帶頂E(k)關(guān)係半導(dǎo)體中起作用的是位於導(dǎo)帶底或價(jià)帶頂附近的電子 用泰勒級(jí)數(shù)展開(kāi)可以近似求出極值附近的E(k)與k的關(guān)係以一維情況為例,設(shè)能帶底位於k=0,將E(k)在k=0附近按泰勒級(jí)數(shù)展開(kāi),取至k2項(xiàng),得到81其中: 對(duì)比自由電子:如果給帶底的電子加外電場(chǎng),可以將加速度寫(xiě)為:E0kE0簡(jiǎn)約布裏淵區(qū)允帶允帶允帶禁帶禁帶83§3.2固體中電的傳導(dǎo)固體中電流是由於電子的定向移動(dòng)造成的在滿帶中,所有電子狀態(tài)被佔(zhàn)據(jù)首先在無(wú)外力情況下。電子也並非靜止的處?kù)赌骋粋€(gè)固定的狀態(tài)。在熱擾動(dòng)的情況下,電子可能增加或減少自己的能量,從而在各個(gè)k狀態(tài)中躍遷(指能量改變)。但是由於是滿帶,每有一個(gè)k狀態(tài)的電子改變了能量跑到了k’狀態(tài),則相應(yīng)的就有一個(gè)電子填補(bǔ)了k狀態(tài),由於電子的全同性,相當(dāng)於系統(tǒng)的狀態(tài)沒(méi)有任何改變,因而沒(méi)有電流。84當(dāng)外力作用於滿帶時(shí),假設(shè)某個(gè)電子獲得了能量。而跑到另一個(gè)k狀態(tài)中,但由於是滿帶,所有的狀態(tài)都被佔(zhàn)據(jù),因而另一個(gè)k狀態(tài)中的電子就需要填充到原有的這個(gè)k狀態(tài)中,即相當(dāng)於兩個(gè)電子狀態(tài)上的電子進(jìn)行了交換。由於電子是全同粒子,交換後所表達(dá)的狀態(tài)和原先的狀態(tài)是完全一樣的,因而系統(tǒng)的狀態(tài)不發(fā)生變化,自然也沒(méi)有電流的產(chǎn)生。85在不滿帶中,部分電子狀態(tài)被佔(zhàn)據(jù)。在沒(méi)有外力作用的情況下,半滿帶內(nèi)的電子可以在熱的影響下改變自己的能量而跑到別的k狀態(tài)中。但由於E~k是偶函數(shù)(晶體的對(duì)稱性),處?kù)秌狀態(tài)和-k狀態(tài)的幾率相等,即有向一個(gè)方向運(yùn)動(dòng)的電子,平均地就有一個(gè)相應(yīng)的向相反方向運(yùn)動(dòng)的電子。即電子雜亂無(wú)章的熱運(yùn)動(dòng)在各個(gè)方向是等價(jià)而對(duì)稱的,因而沒(méi)有宏觀電流。(k和電子的運(yùn)動(dòng)速度即方向有關(guān))86對(duì)於半滿帶中的電子來(lái)說(shuō)。當(dāng)施加於外力F時(shí):由於外力的作用電子獲得了能量和靜動(dòng)量,向某一個(gè)方向運(yùn)動(dòng)的電子超過(guò)相反方向(改變了k空間的對(duì)稱分佈),因而表現(xiàn)出宏觀電流。由於電子在電場(chǎng)作用下造成的定向運(yùn)動(dòng)造成的漂移電流為:e電子電量,n電子密度,用求和的形式表示,表明電流是電子向各個(gè)方向運(yùn)動(dòng)抵消後的淨(jìng)運(yùn)動(dòng)造成的。87§3.2.3有效品質(zhì)問(wèn)題:什麼叫品質(zhì)?如何測(cè)量一個(gè)物體的品質(zhì)?
m=N/g F=ma品質(zhì)(慣性)是和作用力改變運(yùn)動(dòng)狀態(tài)有關(guān)的量。對(duì)於晶格中的某一個(gè)電子來(lái)說(shuō):Fint非常複雜,難以確定。因而我們將公式簡(jiǎn)寫(xiě)為:其中加速度a直接與外力有關(guān)。參數(shù)m*對(duì)外力Fext表現(xiàn)出類似於慣性品質(zhì)的性質(zhì),叫做有效品質(zhì)。所謂有效是指:“有效”的意義在於“它是有效的,但不是真實(shí)的”88有效性表現(xiàn)在當(dāng)我們用可控制的物理作用“Fext”作用於晶體中的電子時(shí),有效品質(zhì)可以描繪出該作用對(duì)該電子的影響。教材p53頁(yè)給出了一個(gè)對(duì)有效品質(zhì)的直觀解釋89有效品質(zhì)與E-k圖的關(guān)係 能量的改變對(duì)應(yīng)於狀態(tài)的改變。在無(wú)外力作用的情況下,晶體中電子的能量是恒定的(平均)。當(dāng)外力作用於晶體電子時(shí),其能量就要改變(平均),因而我們用能量E和狀態(tài)k之間的變化關(guān)係來(lái)描繪有效品質(zhì)。對(duì)應(yīng)於經(jīng)典理論:90
先考慮自由電子: 根據(jù)德布羅意波粒二相性原理:
對(duì)於自由電子,其E-k關(guān)係:
E的二階導(dǎo)數(shù)是一個(gè)常量,電子品質(zhì)是個(gè)常量Ek91對(duì)於晶格電子,在能帶極值附近進(jìn)行泰勒級(jí)數(shù)展開(kāi):
一階導(dǎo)數(shù)為0,取至二階(拋物線近似,近自由電子近似)對(duì)於特定的半導(dǎo)體: 應(yīng)當(dāng)為一定值(極值附近),假設(shè)為 ,則可表示為:92可以看到,和自由電子相比,m*起著相當(dāng)於品質(zhì)的作用。m*的特殊之處。自由電子靜品質(zhì)m0為常數(shù),而有效品質(zhì)和E-k關(guān)係有關(guān)。只有在能帶圖上的特定位置,其值才能作為常數(shù)。(可用迴旋共振的方法測(cè)出)。m*的大小和E對(duì)k的二階導(dǎo)數(shù)有關(guān),在帶底處,E-k二階導(dǎo)數(shù)為正(曲率為正),因而有效品質(zhì)為正,而在能帶頂部,E-k二階導(dǎo)數(shù)為負(fù)(曲率為負(fù)),因而有效品質(zhì)為負(fù)。教材p57給出了一個(gè)有效品質(zhì)為負(fù)的直觀解釋。93有效品質(zhì)和半導(dǎo)體電子的平均速度 對(duì)於自由電子:
相應(yīng)地: 並不是晶格中電子的動(dòng)量,但卻有著類似於自由電子動(dòng)量的表達(dá)( ),因而被稱作準(zhǔn)動(dòng)量。94有效品質(zhì)和加速度實(shí)際的半導(dǎo)體器件在一定的電壓下工作,半導(dǎo)體內(nèi)部產(chǎn)生外加電場(chǎng)。電場(chǎng)強(qiáng)度為E時(shí)外力對(duì)電子做功等於能量的改變:將 代入:95
這反映了在外力作用下,電子的狀態(tài)隨時(shí)間不斷變化,相應(yīng)地速度不斷變化,則加速度為: 從而 可以看到,借助於有效品質(zhì)的概念,晶體電子在外力的作用下的運(yùn)動(dòng)規(guī)律可以用經(jīng)典的牛頓理論來(lái)描述。有效品質(zhì)是一個(gè)將經(jīng)典理論和量子理論聯(lián)繫起來(lái)的概念。96有效品質(zhì)的意義在於:它概括了半導(dǎo)體內(nèi)部勢(shì)場(chǎng)的作用,使得在解決半導(dǎo)體中電子在外力作用下的運(yùn)動(dòng)運(yùn)動(dòng)規(guī)律時(shí),可以不涉及到半導(dǎo)體內(nèi)部勢(shì)場(chǎng)的作用。mn*可以直接由實(shí)驗(yàn)測(cè)定,因而可以很方便地解決電子的運(yùn)動(dòng)規(guī)律有效品質(zhì)與能量函數(shù)對(duì)於k的二次微商成反比,能帶越窄,二次微商越小,有效品質(zhì)越大。內(nèi)層電子的能帶窄,有效品質(zhì)大外層電子的能帶寬,有效品質(zhì)小外層電子,在外力的作用下可以獲得較大的加速度。97§3.2.4空穴的概念 矽二維晶格結(jié)構(gòu)在0k時(shí),所有的外層價(jià)電子都處?kù)豆矁r(jià)鍵中(處?kù)秲r(jià)帶中,滿帶),因而不能導(dǎo)電。E熱激發(fā),一個(gè)電子打破共價(jià)鍵而游離,成為準(zhǔn)自由電子在電場(chǎng)作用下,空位的移動(dòng)形成電流。電子躍遷後留下的空位叫空穴98設(shè)想價(jià)帶中一個(gè)電子激發(fā)到價(jià)帶,電子電流密度
J=價(jià)帶(k狀態(tài)空出)電子總電流設(shè)想以一個(gè)電子填充到空的k狀態(tài),k狀態(tài)電子電流=(-q)v(k)填入這個(gè)電子後價(jià)帶又被填滿,總電流應(yīng)為零
J+(-q)v(k)=0
因而得到
J=(+q)v(k)說(shuō)明:當(dāng)價(jià)帶k狀態(tài)空出時(shí),價(jià)帶電子的總電流,如同一個(gè)正電荷的粒子以k狀態(tài)電子速度v(k)運(yùn)動(dòng)時(shí)所產(chǎn)生的電流。99空穴的主要特徵:荷正電:+q;空穴濃度表示為p(電子濃度表示為n);EP=-En(能量方向相反)mP*=-mn*空穴的意義:可以把價(jià)帶大量電子的運(yùn)動(dòng)狀態(tài)用很少的空穴的運(yùn)動(dòng)表示出來(lái)。Ek100§3.2.5金屬、絕緣體和半導(dǎo)體固體導(dǎo)電性和能帶的關(guān)係允帶和禁帶空帶(無(wú)電子,不導(dǎo)電);滿帶(無(wú)空狀態(tài),不導(dǎo)電);不滿帶(導(dǎo)電,電子,空穴)101能帶(energyband)包括允帶和禁帶。允帶(allowedband):允許電子能量存在的能量範(fàn)圍。禁帶(forbiddenband):不允許電子存在的能量範(fàn)圍。允帶又分為空帶、滿帶、導(dǎo)帶、價(jià)帶??諑В╡mptyband):不被電子佔(zhàn)據(jù)的允帶。滿帶(filledband):允帶中的能量狀態(tài)(能級(jí))均被電子佔(zhàn)據(jù)。導(dǎo)帶(conductionband):電子未占滿的允帶(有部分電子。)價(jià)帶(valenceband):被價(jià)電子佔(zhàn)據(jù)的允帶(低溫下通常被價(jià)電子占滿)。102用能帶理論解釋導(dǎo)體、半導(dǎo)體、絕緣體的導(dǎo)電性:0<Eg<6eVEg>6eV金屬半導(dǎo)體絕緣體103金屬中,由於組成金屬的原子中的價(jià)電子佔(zhàn)據(jù)的能帶是部分占滿的,所以金屬是良好的導(dǎo)電體半導(dǎo)體和絕緣體的能帶類似,即下麵是已被價(jià)電子占滿的滿帶(其下麵還有為內(nèi)層電子占滿的若干滿帶),亦稱價(jià)帶,中間為禁帶,上面是空帶。因此,在外電場(chǎng)作用下並不導(dǎo)電,但是這只是絕對(duì)溫度為零時(shí)的情況。絕緣體的禁帶寬度很大,激發(fā)電子需要很大的能量,在通常溫度下,能激發(fā)到導(dǎo)帶中的電子很少,所以導(dǎo)電性很差。半導(dǎo)體禁帶寬度比較小,在通常溫度下已有不少電子被激發(fā)到導(dǎo)帶中去,所以具有一定的導(dǎo)電能力,這是絕緣體和半導(dǎo)體的主要區(qū)別。半導(dǎo)體中導(dǎo)帶的電子和價(jià)帶的空穴參與導(dǎo)電,這是與金屬導(dǎo)體的最大差別。室溫下,金剛石的禁帶寬度為6~7eV,它是絕緣體;矽為1.12eV,鍺為0.67eV,砷化鎵為1.43eV,所以它們都是半導(dǎo)體。104§3.3矽和砷化鎵的能帶圖三維擴(kuò)展電子在晶體中不同的方向上運(yùn)動(dòng)的時(shí)候遇到的勢(shì)場(chǎng)是不同的,因而E-k關(guān)係是k空間方向上的函數(shù)105對(duì)於一維模型來(lái)說(shuō),關(guān)於k座標(biāo)對(duì)稱,因而一個(gè)方向畫(huà)出一半就可以表示另一半的曲線 砷化鎵材料導(dǎo)帶的最低點(diǎn)與價(jià)帶的最高點(diǎn)都位於k=0點(diǎn),直接帶隙半導(dǎo)體材料,電子在不同能帶之間的躍遷沒(méi)有動(dòng)量的改變,這對(duì)於半導(dǎo)體材料的光電特性具有重要意義。106右圖所示為矽晶體材料沿著[100]和[111]方向的E~k關(guān)係示意圖。矽材料導(dǎo)帶的最低點(diǎn)位於[100]方向,其價(jià)帶的最高點(diǎn)仍然位於k=0點(diǎn),具有這種能帶結(jié)構(gòu)的半導(dǎo)體材料通常稱為間接帶隙半導(dǎo)體材料,此時(shí)電子在不同能帶之間的躍遷涉及到動(dòng)量的改變,除了滿足能量守恆之外,還必須要滿足動(dòng)量守恆。107有效品質(zhì)概念的補(bǔ)充對(duì)於三維晶體來(lái)說(shuō),在各個(gè)方向上的E~k曲線不同,且能帶極值可能不在原點(diǎn)。因而在不同方向上的有效品質(zhì)不同。108§3.4狀態(tài)密度在單位空間和單位能量中允許存在的狀態(tài)數(shù)目——狀態(tài)密度熱平衡狀態(tài)下的載流子濃度問(wèn)題什麼是熱平衡?不同溫度下的載流子濃度允許的量子態(tài)按能量如何分佈電子在允許的量子態(tài)中如何分佈109§3.4狀態(tài)密度狀態(tài)密度+狀態(tài)分佈函數(shù)
載流子密度
當(dāng)溫度不同時(shí),每層安排的座位數(shù)g(T)為一定值。當(dāng)溫度不同時(shí),每層的人數(shù)分佈為ff(T)。 則當(dāng)某一日溫度為T時(shí),我們知道總?cè)藬?shù)為:110K空間中量子態(tài)的分佈 由於量子效應(yīng)限制,波矢k的取值為分立值。對(duì)於三維晶體,k的允許值為: L是半導(dǎo)體晶體的線度,L3=V,為晶體體積。由kx,ky,kz為坐標(biāo)系所描寫(xiě)的k空間中,每一組整數(shù)(nx、ny、nz)就對(duì)應(yīng)著一個(gè)波矢k。在k空間中,狀態(tài)是均勻分佈的,每個(gè)k狀態(tài)所佔(zhàn)據(jù)k空間的體積為π3/L3=π3/V。由於每個(gè)k狀態(tài)可以佔(zhàn)據(jù)兩個(gè)電子(自旋相反),因而在k空間中,電子的允許狀態(tài)密度是2V/π3。111導(dǎo)帶底狀態(tài)密度在k空間中,只考慮1/8球殼,E到E+dE之間的量子態(tài)數(shù)為:將k換為E,根據(jù)E-k關(guān)係有:
112代入,得到:因?yàn)橛?/p>
最後,這是體積V中的狀態(tài)密度,除以V,得到單位體積內(nèi)的狀態(tài)密度函數(shù):113根據(jù)空穴的E-k關(guān)係可求得空穴的狀態(tài)密度:狀態(tài)密度同時(shí)是體積密度和能量密度狀態(tài)密度和能量和有效品質(zhì)有關(guān)實(shí)際半導(dǎo)體中,由於有效品質(zhì)可能有方向性,因而等能面不為球面,則採(cǎi)用平均的有效品質(zhì)來(lái)計(jì)算,稱為狀態(tài)密度有效品質(zhì)對(duì)於價(jià)帶,可能是複合能帶,為輕重空穴的狀態(tài)密度之和,因而採(cǎi)用價(jià)帶頂空穴狀態(tài)密度的有效品質(zhì)114當(dāng)EV<E<EC時(shí),為禁帶(帶隙),在此能量區(qū)間g(E)=0
導(dǎo)帶中電子的態(tài)密度分佈函數(shù)gC(E)和價(jià)帶中空穴的態(tài)密度分佈函數(shù)gV(E)隨著能量E的變化關(guān)係如右圖所示,當(dāng)電子的態(tài)密度有效品質(zhì)與空穴的態(tài)密度有效品質(zhì)相等時(shí),二者則關(guān)於禁帶中心線相對(duì)稱。115§3.5統(tǒng)計(jì)力學(xué)簡(jiǎn)介
在處理有關(guān)大量微觀粒子的系統(tǒng)時(shí),我們關(guān)心的主要是大量微觀粒子所表現(xiàn)出的統(tǒng)計(jì)規(guī)律,而不是具體某個(gè)微觀粒子的特性。
1.統(tǒng)計(jì)規(guī)律:
微觀粒子在不同能級(jí)上的分佈情況所遵循的統(tǒng)計(jì)規(guī)律主要有:
(1)麥克斯韋-玻爾茲曼統(tǒng)計(jì)分佈函數(shù);不同微觀粒子之間相互可以區(qū)分,每個(gè)能態(tài)上所允許存在的粒子數(shù)量不受限制。主要適用於經(jīng)典粒子的能量分佈,例如在一個(gè)低壓密閉容器中的氣體分子就遵循麥克斯韋-玻爾茲曼統(tǒng)計(jì)分佈規(guī)律。116(2)玻色-愛(ài)因斯坦統(tǒng)計(jì)分佈函數(shù);
不同微觀粒子之間相互無(wú)法區(qū)分,但是每個(gè)量子態(tài)上所允許存在的粒子數(shù)量仍然不受限制。玻色子,不受泡利不相容原理的約束,例如,光子,黑體輻射就遵循玻色-愛(ài)因斯坦統(tǒng)計(jì)分佈規(guī)律。
(3)費(fèi)米-狄拉克統(tǒng)計(jì)分佈函數(shù);
不同微觀粒子之間相互無(wú)法區(qū)分,並且每個(gè)量子態(tài)上只允許存在的一個(gè)微觀粒子。費(fèi)米子,服從泡利不相容原理,例如,晶體中的電子就遵循費(fèi)米-狄拉克統(tǒng)計(jì)分佈規(guī)律。1172.費(fèi)米-狄拉克分佈函數(shù)與費(fèi)米能級(jí):
前面我們已經(jīng)介紹,晶體中的電子遵循費(fèi)米-狄拉克統(tǒng)計(jì)分佈規(guī)律。費(fèi)米-狄拉克統(tǒng)計(jì)分佈函數(shù)為:上式中,N(E)為單位體積的晶體材料中,單位能量間隔區(qū)間記憶體在的微觀粒子數(shù)量,g(E)為單位體積的晶體材料中,單位能量間隔區(qū)間內(nèi)所具有的量子態(tài)數(shù)量。fF(E)就稱作費(fèi)米-狄拉克統(tǒng)計(jì)分佈函數(shù),它反映的是能量為E的一個(gè)量子態(tài)被一個(gè)電子佔(zhàn)據(jù)的幾率。而EF則稱為費(fèi)米能級(jí)。118T=0K時(shí)的費(fèi)米-狄拉克統(tǒng)計(jì)分佈函數(shù):
如下圖所示。在T=0K條件下,當(dāng)E<EF時(shí),fF(E)=1;而當(dāng)E>EF時(shí),fF(E)=0;
T>0K時(shí),E>EFfn(E)<1/2;E=EF,fn(E)=1/2;E<EFfn(E)>1/2。
注意:費(fèi)米能級(jí)EF反映的是電子在不同能態(tài)上的填充水準(zhǔn),但並不一定對(duì)應(yīng)於某個(gè)具體的能級(jí)。119T=0K時(shí),13個(gè)電子在不同能級(jí)、不同量子態(tài)上的分佈示意圖。120
考慮量子態(tài)密度g(E)是能
量E的連續(xù)函數(shù),如左圖中的
曲線所示,假設(shè)系統(tǒng)中的電
子總數(shù)為N0,在T=0K時(shí),電
子在這些量子態(tài)上的分佈情
況如圖中虛線所示。電子首
先從低能級(jí)開(kāi)始往上填充,
最後使得費(fèi)米能級(jí)EF以下的
能級(jí)全部填滿,而EF以上的
能級(jí)全部為空。只要已知g(E)
和N0
,則可以很方便地確定
費(fèi)米能級(jí)EF。121當(dāng)溫度高於絕對(duì)零度時(shí),部分電子將獲得一定的熱運(yùn)動(dòng)能量,因此13個(gè)電子在不同能級(jí)、不同量子態(tài)上的分佈情況將會(huì)有所改變,如下圖所示。兩個(gè)原來(lái)位於E4能級(jí)的電子躍遷到了E5能級(jí),而一個(gè)原來(lái)位於E3能級(jí)的電子則躍遷到了E4能級(jí)。122當(dāng)溫度高於絕對(duì)零度時(shí),電子分佈情況的改變可以通過(guò)費(fèi)米-狄拉克分佈函數(shù)的改變來(lái)反映。在溫度T>0K時(shí),如果取E=EF,則有:123fF(E)反映的是能量為E的一個(gè)量子態(tài)被一個(gè)電子佔(zhàn)據(jù)的幾率,而1?fF(E)反映的則是能量為E的一個(gè)量子態(tài)未被電子佔(zhàn)據(jù)(即為空態(tài))的幾率。124熱平衡:一定溫度下,在半導(dǎo)體中存在著這樣的過(guò)程:載流子的產(chǎn)生——價(jià)帶電子(施主雜質(zhì))躍遷到導(dǎo)帶載流子的複合——導(dǎo)帶電子躍遷到價(jià)帶並與空穴複合兩個(gè)過(guò)程動(dòng)態(tài)平衡使得半導(dǎo)體內(nèi)有一定數(shù)量的電子和空穴,這種平衡和溫度有關(guān)EcEv產(chǎn)生複合ED○●○●125在一定溫度T下,載流子的產(chǎn)生過(guò)程與複合過(guò)程之間處?kù)秳?dòng)態(tài)的平衡,這種狀態(tài)就叫熱平衡狀態(tài)。允許的量子態(tài)按能量如何分佈(單位能量間隔內(nèi)有多少量子態(tài))電子在允許的量子態(tài)中如何分佈(在特定的能量位置,狀態(tài)被佔(zhàn)據(jù)的幾率)在能量間隔dE內(nèi)的電子數(shù)為:整個(gè)導(dǎo)帶內(nèi)的電子數(shù):126狀態(tài)密度+狀態(tài)分佈函數(shù)
載流子密度
當(dāng)溫度不同時(shí),每層安排的座位數(shù)g(T)為一定值。當(dāng)溫度不同時(shí),每層的人數(shù)分佈為ff(T)。 則當(dāng)某一日溫度為T時(shí),我們知道總?cè)藬?shù)為:127計(jì)算過(guò)程k空間量子態(tài)密度k空間單位能量間隔內(nèi)的量子態(tài)數(shù)單位體積、單位能量間隔內(nèi)的量子態(tài)數(shù)(狀態(tài)密度)128k空間量子態(tài)密度量子化效應(yīng)導(dǎo)致k分立一維晶體模型,N+1個(gè)原子組成,晶格常數(shù)為a,晶體的長(zhǎng)為L(zhǎng),起點(diǎn)在x處在x和x+L處,電子的波函數(shù)分別為φ(x)和φ(x+L)
φ(x)=φ(x+L)xx+LaL=a×N129該一維晶體k的可能取值為:電子的一個(gè)允許能量狀態(tài)的代表點(diǎn)
在一維空間中k狀態(tài)間隔為2π/L130推廣到三維:邊長(zhǎng)為L(zhǎng)=N*a,體積為L(zhǎng)3=V。K空間中的狀態(tài)分佈kx????????????????????????????????????????????????????????kzky電子的一個(gè)允許能量狀態(tài)的代表點(diǎn)每一個(gè)k狀態(tài)所佔(zhàn)據(jù)的k空間體積為:131單位k空間允許的狀態(tài)數(shù)為:?jiǎn)挝籯空間體積內(nèi)所含的允許狀態(tài)數(shù)等於晶體體積V/(2
)3--k空間的量子態(tài)(狀態(tài))密度考慮自旋,k空間的電子態(tài)密度為:2V/(2
)3任意k空間體積中所包含的電子態(tài)數(shù)為:132通過(guò)能量E和k的關(guān)係,在k空間中求出單位能量間隔內(nèi)的量子態(tài)數(shù)導(dǎo)帶底的E-k關(guān)係: 球形等能面的半徑k133球所占的k
空間的體積為:設(shè)這個(gè)球內(nèi)所包含的電子態(tài)數(shù)為Z(E):能量由E增加到E+dE,k空間體積增加:134電子態(tài)數(shù)變化dZ(E):因?yàn)橛校?35代入,得到:因?yàn)橛?/p>
最後,這是體積V中的狀態(tài)密度,除以V,得到單位體積內(nèi)的狀態(tài)密度函數(shù):136根據(jù)空穴的E-k關(guān)係可求得空穴的狀態(tài)密度:狀態(tài)密度的特點(diǎn):狀態(tài)密度同時(shí)是體積密度和能量密度狀態(tài)密度和能量和有效品質(zhì)有關(guān)實(shí)際半導(dǎo)體中,由於有效品質(zhì)可能有方向性,因而等能面不為球面,則採(cǎi)用平均的有效品質(zhì)來(lái)計(jì)算,稱為狀態(tài)密度有效品質(zhì)對(duì)於價(jià)帶,可能是複合能帶,為輕重空穴的狀態(tài)密度之和,因而採(cǎi)用價(jià)帶頂空穴狀態(tài)密度的有效品質(zhì)137當(dāng)EV<E<EC時(shí),為禁帶(帶隙),在此能量區(qū)間g(E)=0
導(dǎo)帶中電子的態(tài)密度分佈函數(shù)gC(E)和價(jià)帶中空穴的態(tài)密度分佈函數(shù)gV(E)隨著能量E的變化關(guān)係如右圖所示,當(dāng)電子的態(tài)密度有效品質(zhì)與空穴的態(tài)密度有效品質(zhì)相等時(shí),二者則關(guān)於禁帶中心線相對(duì)稱。138§3.5統(tǒng)計(jì)力學(xué)(分佈函數(shù)) 粒子按能量不同進(jìn)行的分佈,或者說(shuō)粒子佔(zhàn)據(jù)不同能量量子態(tài)的幾率。粒子按能量的分佈麥克斯韋-玻爾茲曼統(tǒng)計(jì)分佈函數(shù); 不同微觀粒子之間相互可以區(qū)分,每個(gè)能態(tài)上所允許存在的粒子數(shù)量不受限制。主要適用於經(jīng)典粒子的能量分佈,例如在一個(gè)低壓密閉容器中的氣體分子就遵循麥克斯韋-玻爾茲曼統(tǒng)計(jì)分佈規(guī)律。玻色-愛(ài)因斯坦統(tǒng)計(jì)分佈函數(shù);
不同微觀粒子之間相互無(wú)法區(qū)分,但是每個(gè)量子態(tài)上所允許存在的粒子數(shù)量仍然不受限制。玻色子,不受泡利不相容原理的約束,例如,光子,黑體輻射就遵循玻色-愛(ài)因斯坦統(tǒng)計(jì)分佈規(guī)律。
139費(fèi)米-狄拉克統(tǒng)計(jì)分佈函數(shù);
不同微觀粒子之間相互無(wú)法區(qū)分,並且每個(gè)量子態(tài)上只允許存在的一個(gè)微觀粒子。費(fèi)米子,服從泡利不相容原理,例如,晶體中的電子就遵循費(fèi)米-狄拉克統(tǒng)計(jì)分佈規(guī)律。在絕對(duì)溫度T下的物體內(nèi),電子達(dá)到熱平衡狀態(tài)時(shí),一個(gè)能量為E的獨(dú)立量子態(tài),被一個(gè)電子佔(zhàn)據(jù)的幾率f(E)為: 其中,k為波爾茲曼常數(shù),T為溫度,EF具有能量的量綱,叫做費(fèi)米能級(jí)140將半導(dǎo)體中大量電子的集體視為一個(gè)熱力學(xué)系統(tǒng),統(tǒng)計(jì)理論證明,費(fèi)米能級(jí)EF是系統(tǒng)的化學(xué)勢(shì),即 上式的意義是:當(dāng)系統(tǒng)處?kù)稛崞胶鉅顟B(tài),也不對(duì)外界做工的情況下,系統(tǒng)中增加一個(gè)電子所引起系統(tǒng)自由能的變化,等於系統(tǒng)的化學(xué)勢(shì),也就是等於系統(tǒng)的費(fèi)米能級(jí)。而處?kù)稛崞胶鉅顟B(tài)的系統(tǒng)有統(tǒng)一的化學(xué)勢(shì),所以處?kù)稛崞胶鉅顟B(tài)的電子系統(tǒng)有統(tǒng)一的費(fèi)米能級(jí)。141T=0K時(shí)的費(fèi)米-狄拉克統(tǒng)計(jì)分佈函數(shù):
如下圖所示。在T=0K條件下,當(dāng)E<EF時(shí),fF(E)=1;而當(dāng)E>EF時(shí),fF(E)=0;
T>0K時(shí),E>EFfn(E)<1/2;E=EF,fn(E)=1/2;E<EFfn(E)>1/2。
注意:費(fèi)米能級(jí)EF反映的是電子在不同能態(tài)上的填充水準(zhǔn),但並不一定對(duì)應(yīng)於某個(gè)具體的能級(jí)。142T=0K時(shí),13個(gè)電子在不同能級(jí)、不同量子態(tài)上的分佈示意圖。143考慮量子態(tài)密度g(E)是能量E的連續(xù)函數(shù),如左圖中的曲線所示,假設(shè)系統(tǒng)中的電子總數(shù)為N0,在T=0K時(shí),電子在這些量子態(tài)上的分佈情況如圖中虛線所示。電子首先從低能級(jí)開(kāi)始往上填充,最後使得費(fèi)米能級(jí)EF以下的
能級(jí)全部填滿,而EF以上的能級(jí)全部為空。只要已知g(E)和N0
,則可以很方便地確定費(fèi)米能級(jí)EF。144當(dāng)溫度高於絕對(duì)零度時(shí),部分電子將獲得一定的熱運(yùn)動(dòng)能量,因此13個(gè)電子在不同能級(jí)、不同量子態(tài)上的分佈情況將會(huì)有所改變,如下圖所示。兩個(gè)原來(lái)位於E4能級(jí)的電子躍遷到了E5能級(jí),而一個(gè)原來(lái)位於E3能級(jí)的電子則躍遷到了E4能級(jí)。145當(dāng)溫度高於絕對(duì)零度時(shí),電子分佈情況的改變可以通過(guò)費(fèi)米-狄拉克分佈函數(shù)的改變來(lái)反映。在溫度T>0K時(shí),如果取E=EF,則有:146fF(E)反映的是能量為E的一個(gè)量子態(tài)被一個(gè)電子佔(zhàn)據(jù)的幾率,而1?fF(E)反映的則是能量為E的一個(gè)量子態(tài)未被電子佔(zhàn)據(jù)(即為空態(tài))的幾率。147空穴的分佈其他能級(jí)被佔(zhàn)據(jù)的幾率:電子佔(zhàn)據(jù)施主能級(jí)的幾率(左)空穴佔(zhàn)據(jù)受主能級(jí)的幾率(下)148一般可以認(rèn)為,在溫度不太高時(shí),能量大於EF的電子態(tài)基本上沒(méi)有被電子佔(zhàn)據(jù);能量小於EF的電子態(tài),基本上被電子所佔(zhàn)據(jù),而電子佔(zhàn)據(jù)E=EF能態(tài)的幾率在各種溫度下總是1/2;kT=0.0258eV,(T=300K)EF
的位置比較直觀地反映了電子佔(zhàn)據(jù)電子態(tài)的情況。即標(biāo)誌了電子填充能級(jí)的水準(zhǔn)。EF
越高,說(shuō)明有較多的能量較高的電子態(tài)上有電子佔(zhàn)據(jù)。1493.麥克斯韋-玻爾茲曼分佈近似:
當(dāng)E?EF>>kT時(shí),則有:150E-EF=5kT時(shí),當(dāng)T=300k時(shí),為0.129eV151Boltzmann近似的有效性與簡(jiǎn)並半導(dǎo)體當(dāng)費(fèi)米能級(jí)移動(dòng)到導(dǎo)帶內(nèi)或價(jià)帶內(nèi)時(shí),費(fèi)米能級(jí)以下的所有電子態(tài)都幾乎被佔(zhàn)據(jù)。(同一個(gè)能級(jí)佔(zhàn)據(jù)兩個(gè)電子)這時(shí)稱為載流子的簡(jiǎn)並化,相應(yīng)的稱該半導(dǎo)體為簡(jiǎn)並半導(dǎo)體,處理簡(jiǎn)並半導(dǎo)體必須應(yīng)用F-D分佈函數(shù)。EFEA(a)(b)(c)(d)(e)EFEFEFEF強(qiáng)p型p型本征n型強(qiáng)n型Ei平衡半導(dǎo)體平衡狀態(tài)或熱平衡狀態(tài),是指沒(méi)有外界影響(如電壓、電場(chǎng)、磁場(chǎng)或者溫度梯度等)作用於半導(dǎo)體上的狀態(tài)。在半導(dǎo)體中主要關(guān)注產(chǎn)生和複合過(guò)程的動(dòng)態(tài)平衡平衡態(tài)——不隨時(shí)間變化(動(dòng)態(tài)平衡的結(jié)果)費(fèi)米能級(jí)是描述熱平衡狀態(tài)的重要參數(shù)平衡態(tài)是研究非平衡態(tài)的出發(fā)點(diǎn)§4.1 半導(dǎo)體中的載流子載流子:在半導(dǎo)體內(nèi)可以運(yùn)動(dòng)形成電流的電子或(空穴)載流子的定向運(yùn)動(dòng)形成電流;在半導(dǎo)體中有兩種載流子:電子和空穴半導(dǎo)體中電流的大小取決於:載流子的濃度,載流子的運(yùn)動(dòng)速度(定向的平均速度)在本章內(nèi)容中,我們僅僅關(guān)注熱平衡狀態(tài)下的載流子的濃度對(duì)載流子濃度的推導(dǎo)和計(jì)算需要用到狀態(tài)密度和分佈函數(shù)導(dǎo)帶電子和價(jià)帶空穴的濃度n0和p0方程電子濃度 根據(jù)狀態(tài)密度和分佈函數(shù)的定義,我們知道某一能量值的電子濃度為:
則整個(gè)導(dǎo)帶範(fàn)圍內(nèi)的電子濃度為:
對(duì)應(yīng)於該能量的狀態(tài)密度對(duì)應(yīng)於該能量的佔(zhàn)據(jù)幾率空穴濃度 某一能量值的空穴濃度為:
則整個(gè)導(dǎo)帶範(fàn)圍內(nèi)的空穴濃度為:
對(duì)應(yīng)於該能量的狀態(tài)密度對(duì)應(yīng)於該能量的空位幾率將上節(jié)得到的狀態(tài)密度和分佈函數(shù)代入公式得到
狀態(tài)密度函數(shù)波爾茲曼近似費(fèi)米分佈函數(shù)對(duì)於本征半導(dǎo)體,費(fèi)米能級(jí)位於禁帶中心(附近)費(fèi)米能級(jí)的位置需保證電子和空穴濃度的相等如果電子和空穴的有效品質(zhì)相同,狀態(tài)函數(shù)關(guān)於禁帶對(duì)稱。對(duì)於普通的半導(dǎo)體(Si)來(lái)說(shuō),禁帶寬度的一半,遠(yuǎn)大於kT(~21kT),從而導(dǎo)帶電子和價(jià)帶空穴的分佈可用波爾茲曼近似來(lái)代替fF(E)=0因而可化簡(jiǎn)為: 為了方便計(jì)算,變數(shù)代換:積分項(xiàng)被稱為伽馬函數(shù)因而:其中Nc為導(dǎo)帶的有效狀態(tài)密度(數(shù)量級(jí)一般在1019):相應(yīng)的計(jì)算表明空穴濃度: 其中Nv為價(jià)帶的有效狀態(tài)密度有效狀態(tài)密度和有效品質(zhì)有關(guān)在一定溫度下,特定半導(dǎo)體的有效狀態(tài)密度為常量平衡半導(dǎo)體的載流子濃度和費(fèi)米能級(jí)EF的位置密切相關(guān)指數(shù)項(xiàng)裏的分子總為負(fù)數(shù),這保證了指數(shù)項(xiàng)小於1,對(duì)應(yīng)於載流子濃度小於狀態(tài)密度的事實(shí)常溫下(300K):計(jì)算過(guò)程中近似假設(shè)的合理性波爾茲曼近似的合理性:EF一般位於禁帶中,和導(dǎo)帶底和價(jià)帶頂?shù)木嚯x都比較遠(yuǎn)在狀態(tài)密度的推導(dǎo)過(guò)程中我們使用的E-k關(guān)係(拋物線近似)實(shí)際上只在能帶極值附近成立將積分範(fàn)圍從導(dǎo)帶頂Ec’(價(jià)帶底Ev’)推廣到了正無(wú)窮大∞(負(fù)無(wú)窮大-∞),這樣做是否合適?這樣做的合理性在於:導(dǎo)帶(價(jià)帶)中的電子(空穴)基本集中在導(dǎo)帶底(價(jià)帶頂)附近影響n0
和p0
的因素mn*
和mp*
的影響—材料的影響溫度的影響NC、NV
~Tf(EC)、f(EV)~TT↑,NC、NV↑T↑,幾率↑EF
位置的影響EF→Ec,Ec-EF↓,n0↑—EF越高,電子(導(dǎo)帶)的填充水準(zhǔn)(幾率)越高,對(duì)應(yīng)ND(施主雜質(zhì)濃度)較高;EF→Ev,EF-Ev↓,po↑—EF越低,電子(價(jià)帶)的填充水準(zhǔn)越低(空位幾率越高),對(duì)應(yīng)NA(受主雜質(zhì)濃度)較高。no和po與摻雜有關(guān),決定於摻雜的類型和數(shù)量。當(dāng)溫度一定時(shí),n0
、p0之積與EF無(wú)關(guān);這表明:導(dǎo)帶電子濃度與價(jià)帶空穴濃度是相互制約的,這是動(dòng)態(tài)熱平衡的一個(gè)反映。本征半導(dǎo)體:n0=p0=ni,(ni本征載流子濃度)n型半導(dǎo)體:n0>p0p型半導(dǎo)體:n0<p0非簡(jiǎn)並半導(dǎo)體的載流子濃度乘積只與本征材料有關(guān)本征載流子濃度本征半導(dǎo)體:不含有雜質(zhì)原子的半導(dǎo)體材料。本征半導(dǎo)體中,載流子主要來(lái)源於本征激發(fā)。本征半導(dǎo)體中導(dǎo)帶電子濃度ni等於價(jià)帶空穴濃度pi,稱為本征載流子濃度,用ni來(lái)表示本征激發(fā)的過(guò)程同時(shí)產(chǎn)生一個(gè)電子和一個(gè)空穴本征半導(dǎo)體的費(fèi)米能級(jí)稱為本征費(fèi)米能級(jí)EFi。在本征半導(dǎo)體中,電中性條件: 可見(jiàn)本征載流子濃度只和溫度、禁帶寬度Eg有關(guān)。本征載流子濃度和溫度、禁帶寬度的關(guān)係禁帶寬度Eg越大,本征載流子濃度越低禁帶寬度Eg越大,本征載流子濃度越低本征載流子濃度和溫度、禁帶寬度的關(guān)係計(jì)算出的矽材料本征載流子濃度與實(shí)測(cè)的本征載流子濃度有偏離,這是因?yàn)槲覀兪褂玫挠行焚|(zhì)等參數(shù)是在低溫下測(cè)出的,而隨著溫度變化E-k關(guān)係可能變化,因而理論值與實(shí)際值有偏差。
例4.3,E4.3-4.5T↑,lnT↑,1/T↓,ni↑本征費(fèi)米能級(jí)位置由本征半導(dǎo)體的電中性條件:當(dāng)空穴有效品質(zhì)大時(shí),相對(duì)應(yīng)價(jià)帶有效狀態(tài)密度大,因而費(fèi)米能級(jí)嚮導(dǎo)帶偏移以保證導(dǎo)帶電子與價(jià)帶空穴相等。相反亦然由於kT是個(gè)很小的能量值(常溫下),對(duì)於常見(jiàn)的半導(dǎo)體(Si、Ge、GaAs)來(lái)說(shuō),其禁帶能量要遠(yuǎn)大於kT,從而使得費(fèi)米能級(jí)相對(duì)於禁帶中央的偏移總是很?。◣资甿eV)(例4.4、E4.6)50meVEg(Si):1.12eV§4.2 摻雜原子與能級(jí)為什麼要摻雜?半導(dǎo)體的導(dǎo)電性強(qiáng)烈地隨摻雜而變化矽中的施主雜質(zhì)與受主雜質(zhì)電離能:ΔED=EC–ED
;ΔEA=EA–EV
P86頁(yè)給出了採(cǎi)用玻爾等氫原子模型近似計(jì)算出的電離能。表明施主雜質(zhì)在矽和鍺中的電離能大約為幾十個(gè)meV。玻爾半徑為晶格常數(shù)的四倍。常溫下,這些雜質(zhì)處?kù)锻耆婋x狀態(tài)EcEvEdEcEvEd施主雜質(zhì)電離,n型半導(dǎo)體受主雜質(zhì)電離,p型半導(dǎo)體III-V族半導(dǎo)體中的替位式雜質(zhì)
III-V族化合物半導(dǎo)體材料中的摻雜原子對(duì)於III-V族化合物半導(dǎo)體材料來(lái)說(shuō),其摻雜的情況比較複雜。以砷化鎵材料為例,通常II價(jià)元素的雜質(zhì)(例如Be、Mg、Zn等)在砷化鎵材料中往往取代鎵原子的位置,因而表現(xiàn)為受主特性,而VI價(jià)元素的雜質(zhì)(例如S、Se、Te等)在砷化鎵材料中則往往取代砷原子的位置,因而表現(xiàn)為施主特性。至於IV價(jià)元素矽、鍺等,在砷化鎵晶體材料中則既可以取代鎵原子的位置,表現(xiàn)出施主特性,也可以取代砷原子的位置,表現(xiàn)出受主特性,通常我們把這類雜質(zhì)稱為兩性雜質(zhì)。實(shí)驗(yàn)結(jié)果表明,在砷化鎵材料中,鍺原子往往傾向於表現(xiàn)為受主雜質(zhì),而矽原子則傾向於表現(xiàn)為施主雜質(zhì)。右表所示為幾種常見(jiàn)雜質(zhì)在砷化鎵材料中的雜質(zhì)離化能。由表中數(shù)據(jù)可見(jiàn),在正常的室溫條件下,這些雜質(zhì)在砷化鎵材料中都處?kù)锻耆婋x狀態(tài)。
摻入施主雜質(zhì),費(fèi)米能級(jí)向上(導(dǎo)帶)移動(dòng),導(dǎo)帶電子濃度增加,空穴濃度減少過(guò)程:施主電子熱激發(fā)躍遷到導(dǎo)帶增加導(dǎo)帶電子濃度;施主電子躍遷到價(jià)帶與空穴複合,減少空穴濃度;施主原子改變費(fèi)米能級(jí)位置,導(dǎo)致重新分佈摻入受主雜質(zhì),費(fèi)米能級(jí)向下(價(jià)帶)移動(dòng),導(dǎo)帶電子濃度減少,空穴濃度增加過(guò)程:價(jià)帶電子熱激發(fā)到受主能級(jí)產(chǎn)生空穴,增加空穴濃度;導(dǎo)帶電子躍遷到受主能級(jí)減少導(dǎo)帶電子濃度;受主原子改變費(fèi)米能級(jí)位置,導(dǎo)致重新分佈EvEcEd載流子濃度n0和p0的公式:只要滿足玻爾茲曼近似條件,該公式即可成立只要滿足玻爾茲曼近似條件,n0p0的乘積亦然為本征載流子濃度(和材料性質(zhì)有關(guān),摻雜無(wú)關(guān))的平方。(雖然在這裏本征載流子很少)例4.5直觀地說(shuō)明了費(fèi)米能級(jí)的移動(dòng),對(duì)載流子濃度造成的影響:費(fèi)米能級(jí)抬高了約0.3eV,則電子濃度變?yōu)楸菊鳚舛鹊?00000倍,空穴濃度的100000000000倍。載流子濃度n0、p0的另一種表達(dá)方式:同樣地:EF>EFi
電子濃度超過(guò)本征載流子濃度;EF<EFi
空穴濃度超過(guò)本征載流子濃度該公式可推廣費(fèi)米-狄拉克積分
在我們前面推導(dǎo)電子濃度n0和空穴濃度p0的過(guò)程中,我們都假設(shè)了玻爾茲曼近似成立的條件,如果不滿足玻爾茲曼近似條件,則熱平衡狀態(tài)下的電子濃度必須表示為:仍然做變數(shù)代換 並且定義:載流子濃度公式變?yōu)椋鹤⒁猱?dāng)ηF>0時(shí),實(shí)際上意味著費(fèi)米能級(jí)已經(jīng)進(jìn)入到導(dǎo)帶中(簡(jiǎn)並)。P91給出了費(fèi)米積分曲線,利用它可以計(jì)算費(fèi)米積分。例4.6(E4.8)給出了一個(gè)用費(fèi)米積分計(jì)算出的電子濃度。小於用玻爾茲曼近似計(jì)算值典型的簡(jiǎn)並半導(dǎo)體電子濃度費(fèi)米——狄拉克積分與此類似,熱平衡狀態(tài)下的空穴濃度也可以表示為:
可見(jiàn),當(dāng)η’F>0時(shí),實(shí)際上也就意味著費(fèi)米能級(jí)已經(jīng)進(jìn)入到價(jià)帶中。其中:簡(jiǎn)並與非簡(jiǎn)並半導(dǎo)體在n0、p0的推導(dǎo)過(guò)程中,使用了玻爾茲曼假設(shè),該假設(shè)只能處理非簡(jiǎn)並系統(tǒng)。而當(dāng)導(dǎo)帶電子(價(jià)帶空穴)濃度超過(guò)了狀態(tài)密度Nc(Nv)時(shí),費(fèi)米能級(jí)位於導(dǎo)帶(價(jià)帶)內(nèi)部,稱這種半導(dǎo)體為n(p)型簡(jiǎn)並半導(dǎo)體。發(fā)生簡(jiǎn)並的條件大量摻雜溫度的影響(低溫簡(jiǎn)並)簡(jiǎn)並系統(tǒng)的特點(diǎn):雜質(zhì)未完全電離雜質(zhì)能級(jí)相互交疊分裂成能帶,甚至可能與帶邊相交疊。雜質(zhì)上未電離電子也可發(fā)生共有化運(yùn)動(dòng)參與導(dǎo)電。從費(fèi)米積分曲線上可以看出當(dāng)ηF<-2時(shí)為直線,即玻爾茲曼近似成立§4.4 施主和受主的統(tǒng)計(jì)學(xué)分佈我們?cè)谇斑吿岬?,費(fèi)米-狄拉克幾率分佈函數(shù)能夠成立的前提條件是滿足泡利不相容定律,即一個(gè)量子態(tài)上只允許存在一個(gè)電子,這個(gè)定律同樣也適用於施主態(tài)和受主態(tài)。我們將費(fèi)米-狄拉克分佈幾率用於施主雜質(zhì)能級(jí),則有: 其中g(shù)d為施主電子能級(jí)的簡(jiǎn)並度,通常為2。
Nd為施主雜質(zhì)的濃度,nd為佔(zhàn)據(jù)施主能級(jí)的電子濃度,Ed為施主雜質(zhì)能級(jí),Nd+為離化的施主雜質(zhì)濃度。與此類似,當(dāng)我們將費(fèi)米-狄拉克分佈幾率用於受主雜質(zhì)能級(jí)時(shí),則有:
Na為受主雜質(zhì)的濃度,pa為佔(zhàn)據(jù)受主能級(jí)的空穴濃度,Ea為受主雜質(zhì)能級(jí),Na為離化的受主雜質(zhì)濃度,ga為受主能級(jí)的簡(jiǎn)並度,對(duì)於矽和砷化鎵材料來(lái)說(shuō)通常為4在具體的應(yīng)用中,我們往往對(duì)電離的雜質(zhì)濃度更感興趣,而不是未電離的部分完全電離和束縛態(tài)Ed-EF>>kT此時(shí)對(duì)於導(dǎo)帶電子來(lái)說(shuō),波爾茲曼假設(shè)成立則佔(zhàn)據(jù)施主能級(jí)的電子數(shù)和總的電子數(shù)(導(dǎo)帶中和施主能級(jí)中)的比值為:Nc在1019左右,而Ec-Ed為雜質(zhì)電離能,幾十meV,則指數(shù)項(xiàng)的數(shù)量級(jí)為1/e,因而在摻雜濃度不高(<1017)的情況下,雜質(zhì)完全電離。例4.7同樣,對(duì)於摻入受主雜質(zhì)的p型非本征半導(dǎo)體材料來(lái)說(shuō),在室溫下,對(duì)於1016cm-3左右的典型受主雜質(zhì)摻雜濃度來(lái)說(shuō),其摻雜原子也已經(jīng)完全處?kù)峨x化狀態(tài)。室溫條件下n型半導(dǎo)體和p型半導(dǎo)體中雜質(zhì)的完全電離狀態(tài)絕對(duì)零度時(shí)EF位於Ec和Ed之間,雜質(zhì)原子處?kù)锻耆措婋x態(tài),稱為束縛態(tài)例4.8的結(jié)果表明,即使在零下100度的低溫條件下,仍然有90%的受主雜質(zhì)發(fā)生了電離。這表明完全電離假設(shè)在常溫條件附近是近似成立的。絕對(duì)零度時(shí),所有施主雜質(zhì)能級(jí)都被電子所佔(zhàn)據(jù),導(dǎo)帶無(wú)電子?!?.5 摻雜半導(dǎo)體的載流子濃度前邊討論了本征半導(dǎo)體的載流子濃度;討論了施主雜質(zhì)和受主雜質(zhì)在半導(dǎo)體中的表現(xiàn)。定性的給出了雜質(zhì)在不同溫度下的電離情況,並且定性的知道了載流子濃度和摻雜水準(zhǔn)的相關(guān)性。這節(jié)我們要具體推導(dǎo)摻雜半導(dǎo)體的載流子濃度和摻雜的關(guān)係。EcEv補(bǔ)償半導(dǎo)體:同時(shí)施有施主摻雜和受主摻雜的半導(dǎo)體稱為補(bǔ)償半導(dǎo)體。補(bǔ)償?shù)暮x:施主雜質(zhì)電子空穴施主雜質(zhì)施主雜質(zhì)抬高費(fèi)米能級(jí)降低費(fèi)米能級(jí)施主雜質(zhì)EdEan0p0電離施主Nd+電離受主Na-未電離施主未電離受主施主電子受主空穴本征電子本征空穴電中性條件在平衡條件下,補(bǔ)償半導(dǎo)體中存在著導(dǎo)帶電子,價(jià)帶空穴,還有離化的帶電雜質(zhì)離子。但是作為一個(gè)整體,半導(dǎo)體處?kù)峨娭行誀顟B(tài)。因而有:
其中,n0:導(dǎo)帶電子濃度;p0:價(jià)帶空穴濃度。nd是施主中電子密度;Nd+代表離化的施主雜質(zhì)濃度;pa:受主中的空穴密度;Na-:離化的受主雜質(zhì)濃度。完全電離(常溫低摻雜)的條件下,、都等於零在非簡(jiǎn)並條件下關(guān)係仍然成立求解該方程,得到:根式取正號(hào),因?yàn)橐罅銚诫s時(shí)為本征載流子濃度摻雜水準(zhǔn)相等時(shí),完全補(bǔ)償,類本征半導(dǎo)體摻雜濃度大於ni時(shí),雜質(zhì)電子濃度才起主要作用同理利用 可推導(dǎo)出空穴濃度為:例4.9的結(jié)果顯示,在非簡(jiǎn)並條件下,多數(shù)載流子濃度近似等於摻雜濃度(非補(bǔ)償)例4.10結(jié)果顯示,在摻雜濃度和本征載流子濃度相差不大時(shí),須考慮本征載流子濃度的影響例4.11結(jié)果顯示,對(duì)於非簡(jiǎn)並完全電離的補(bǔ)償半導(dǎo)體,多子濃度等於有效摻雜濃度。有效摻雜濃度少數(shù)載流子濃度應(yīng)當(dāng)根據(jù) 推導(dǎo)不同摻雜水準(zhǔn)下半導(dǎo)體中多子與少子的數(shù)量差別
雜質(zhì)原子不僅僅增加了多數(shù)載流子濃度,而且還減少了少數(shù)載流子濃度高溫下的載流子濃度由於本征載流子濃度ni是溫度的強(qiáng)函數(shù),因而隨著溫度的增加,ni迅速增大而使得本征激發(fā)載流子濃度超過(guò)雜質(zhì)載流子濃度,這將導(dǎo)致半導(dǎo)體的摻雜效應(yīng)弱化或消失。在一個(gè)施主雜質(zhì)濃度為5×14cm-3的半導(dǎo)體材料中,電子濃度隨著溫度的變化關(guān)係如下圖所示,當(dāng)溫度由絕對(duì)零度不斷升高時(shí),圖中曲線分別經(jīng)歷了雜質(zhì)凍結(jié)區(qū)、雜質(zhì)部分離化區(qū)、雜質(zhì)完全離化區(qū)(非本征激發(fā)區(qū))和本征激發(fā)區(qū)。從熱平衡電子濃度的運(yùn)算式:波爾茲曼近似成立其中,載流子濃度由和摻雜濃度有關(guān)的方程給出。在普通條件(常溫下完全電離的非簡(jiǎn)並半導(dǎo)體)下:n0=Nd(n型半導(dǎo)體),因而有:可用另外一種方式來(lái)推導(dǎo)費(fèi)米能級(jí)位置:以上公式適用於n型半導(dǎo)體,對(duì)於p型半導(dǎo)體,則分別有:幾個(gè)運(yùn)算式所代表的物理涵義:非簡(jiǎn)並n型半導(dǎo)體EF<Ec(n0)Nd<NcEF>EFi(n0)Nd>ni非簡(jiǎn)並n型半導(dǎo)體Ev>EF(p0)Na<NvEF<EFi(p0)Na>niEF隨摻雜濃度和溫度的變化EF隨摻雜濃度的變化EF隨溫度變化的關(guān)係
不同摻雜濃度條件下,費(fèi)米能級(jí)位置隨著溫度的變化關(guān)係。載流子濃度、摻雜濃度、費(fèi)米能級(jí)之間的關(guān)係載流子濃度與費(fèi)米能級(jí)之間的關(guān)係載流子濃度與摻雜濃度之間的關(guān)係費(fèi)米能級(jí)與載流子濃度及摻雜濃度之間的關(guān)係費(fèi)米能級(jí)的相關(guān)性
在熱平衡條件下,一個(gè)系統(tǒng)中的費(fèi)米能級(jí)總是保持為一個(gè)相等的常數(shù)。
考慮兩個(gè)特定的材料系統(tǒng),熱平衡狀態(tài)下分別具有各自的費(fèi)米能級(jí),當(dāng)二者緊密接觸之后,統(tǒng)一后的整個(gè)系統(tǒng)中,電子將首先填充最低的能態(tài),因此電子將從費(fèi)米能級(jí)高的材料中流向費(fèi)米能級(jí)低的材料,直到二者具有統(tǒng)一的費(fèi)米能級(jí)。這個(gè)過(guò)程如圖所示。小結(jié)載流子濃度的計(jì)算方法:狀態(tài)密度與分佈函數(shù)在導(dǎo)帶(價(jià)帶)能量範(fàn)圍內(nèi)積分波爾茲曼近似與合理化假設(shè)本征載流子濃度只與溫度和材料本身性質(zhì)有關(guān)摻雜半導(dǎo)體、施主雜質(zhì)、受主雜質(zhì)、n型和p型半導(dǎo)體的概念電中性條件;摻雜半導(dǎo)體的載流子濃度費(fèi)米能級(jí)與摻雜濃度的關(guān)係重要的公式:作業(yè)題4.184.224.314.43輸運(yùn):載流子的淨(jìng)流動(dòng)過(guò)程稱為輸運(yùn)。兩種基本輸運(yùn)體制:漂移運(yùn)動(dòng)、擴(kuò)散運(yùn)動(dòng)。載流子的輸運(yùn)現(xiàn)象是最終確定半導(dǎo)體器件電流-電壓特性的基礎(chǔ)。假設(shè):雖然輸運(yùn)過(guò)程中有電子和空穴的淨(jìng)流動(dòng),但是熱平衡狀態(tài)不會(huì)受到干擾。涵義:n、p、EF的關(guān)係沒(méi)有變化。(輸運(yùn)過(guò)程中特定位置的載流子濃度不發(fā)生變化)熱運(yùn)動(dòng)的速度遠(yuǎn)遠(yuǎn)超過(guò)漂移或擴(kuò)散速度。(外加作用,轉(zhuǎn)化為一個(gè)平均的統(tǒng)計(jì)的效果)§5.1 載流子的漂移運(yùn)動(dòng)漂移電流密度:載流子在外加電場(chǎng)作用下的定向運(yùn)動(dòng)稱為漂移運(yùn)動(dòng),由載流子的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車配件訂購(gòu)協(xié)議
- 疫情防治藥品緊急采購(gòu)協(xié)議
- 婚慶策劃合作細(xì)則
- 用功學(xué)習(xí)保證書(shū)
- 房屋買賣意向書(shū)簽訂注意事項(xiàng)詳解
- 采購(gòu)代表合同樣式
- 生態(tài)休閑農(nóng)業(yè)項(xiàng)目規(guī)劃案
- 外墻裂紋修補(bǔ)涂料樣本
- 標(biāo)準(zhǔn)貸款合同格式
- 鋁合金建筑材料購(gòu)銷協(xié)議
- 國(guó)際戰(zhàn)略環(huán)境概述
- 趣味可拓學(xué)智慧樹(shù)知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學(xué)
- (高清版)JTGT 5190-2019 農(nóng)村公路養(yǎng)護(hù)技術(shù)規(guī)范
- 2024年輔警招聘考試試題庫(kù)含完整答案(各地真題)
- 體育初中學(xué)生學(xué)情分析總結(jié)報(bào)告
- 幕墻工程安裝施工施工管理人員配備及分工
- 國(guó)開(kāi)一體化平臺(tái)01588《西方行政學(xué)說(shuō)》章節(jié)自測(cè)(1-23)試題及答案
- 年產(chǎn)5億粒藿香正氣膠囊車間工藝設(shè)計(jì).文檔
- 第17課《昆明的雨》課件(共35張)
- 2023-2024學(xué)年北京市海淀區(qū)七年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- 五官科醫(yī)院感染管理
評(píng)論
0/150
提交評(píng)論