版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題04一元二次不等式與其他不等式【考綱要求】1.理解必要條件、充分條件與充要條件的含義.2.理解全稱量詞與存在量詞的意義.3.能正確地對含有一個量詞的命題進(jìn)行否【思維導(dǎo)圖】【考點(diǎn)總結(jié)】一、一元二次不等式的概念一元二次不等式定義只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式,叫做一元二次不等式表達(dá)式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均為常數(shù)解集ax2+bx+c>0(a≠0)解集是使f(x)=ax2+bx+c的函數(shù)值為正數(shù)的自變量x的取值集合ax2+bx+c<0(a≠0)解集是使f(x)=ax2+bx+c的函數(shù)值為負(fù)數(shù)的自變量x的取值集合ax2+bx+c≥0(a≠0)解集是使f(x)=ax2+bx+c的函數(shù)值大于或等于0的自變量x的取值集合ax2+bx+c≤0(a≠0)解集是使f(x)=ax2+bx+c的函數(shù)值小于或等于0的自變量x的取值集合二、一元二次不等式的解法利用“三個二次”的關(guān)系我們可以解一元二次不等式.解一元二次不等式的一般步驟:(1)將不等式變形,使一端為0且二次項系數(shù)大于0;(2)計算相應(yīng)的判別式;(3)當(dāng)Δ≥0時,求出相應(yīng)的一元二次方程的根;(4)根據(jù)對應(yīng)二次函數(shù)的圖像,寫出不等式的解集.三、一元二次不等式的恒成立問題1.一元二次不等式ax2+bx+c>0的解集是R的等價條件是a>0且Δ<0.2.一元二次不等式ax2+bx+c<0的解集是R的等價條件是a<0且Δ<0.3.分離參數(shù),將恒成立問題轉(zhuǎn)化為求最值問題,即:k≥f(x)恒成立?k≥f(x)max;k≤f(x)恒成立?k≤f(x)min.四、“三個二次”(二次函數(shù)、一元二次方程、一元二次不等式)的關(guān)系Δ=b2-4acΔ>0Δ=0Δ<0y=ax2+bx+c(a>0)的圖像ax2+bx+c=0(a>0)的根有兩個不相等的實根x1,x2,且x1<x2有兩個相等的實數(shù)根x1,x2沒有實數(shù)根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x≠-\f(b,2a)))))Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}??五、分式不等式(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0六、絕對值不等式(1)SKIPIF1<0(2)SKIPIF1<0;SKIPIF1<0;(3)含有兩個或兩個以上絕對值符號的不等式,可用零點(diǎn)分段法和圖象法求解【題型匯編】題型一:一元二次不等式的解法題型二:一元二次不等式的恒成立問題題型三:分式不等式的解法【題型講解】題型一:一元二次不等式的解法一、單選題1.(2022·江西九江·三模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】先化簡SKIPIF1<0集合,再由交集的定義求解即可【詳解】∵SKIPIF1<0∴SKIPIF1<0,故選:A.2.(2022·江蘇·蘇州市第六中學(xué)校三模)設(shè)集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】化簡集合A,根據(jù)交集運(yùn)算求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:B
SKIPIF1<03.(2022·海南海口·二模)已知x,SKIPIF1<0且SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】C【解析】【分析】求出不等式的等價條件,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,則“SKIPIF1<0”兩邊同除以SKIPIF1<0即可得到“SKIPIF1<0”,反過來同乘以SKIPIF1<0即可,故“SKIPIF1<0”是“SKIPIF1<0”的充要條件.故選:C.4.(2022·天津·耀華中學(xué)二模)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】求得集合SKIPIF1<0再求交集即可【詳解】由題,SKIPIF1<0,故SKIPIF1<0故選:D5.(2022·山東煙臺·三模)若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】首先解一元二次不等式求出集合SKIPIF1<0,再根據(jù)補(bǔ)集、交集的定義計算可得;【詳解】解:由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;故選:B6.(2022·廣東廣州·三模)已知命題SKIPIF1<0,命題SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】【分析】先由SKIPIF1<0和SKIPIF1<0解出SKIPIF1<0的范圍,再由充分必要的定義判斷即可.【詳解】由SKIPIF1<0解得SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,顯然SKIPIF1<0,故SKIPIF1<0是SKIPIF1<0的充分不必要條件.故選:A.7.(2022·天津·二模)設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】【分析】解不等式SKIPIF1<0,再根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:由SKIPIF1<0,得SKIPIF1<0,所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:B.8.(2022·廣西·南寧三中二模(文))設(shè)集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】解出一元二次不等式,根據(jù)交集的運(yùn)算法則求解即可.【詳解】由題,解SKIPIF1<0,可得SKIPIF1<0,則可得SKIPIF1<0,故選:B9.(2022·天津南開·一模)設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】A【解析】【分析】由SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,利用充分、必要條件的定義即可判斷出.【詳解】由SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0由“SKIPIF1<0”可推出“SKIPIF1<0”,而由“SKIPIF1<0”推不出“SKIPIF1<0”,∴“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.故選:A.10.(2022·江西南昌·二模(文))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】本題考查集合的交集,易錯點(diǎn)在于集合A元素是自然數(shù),集合B的元素是實數(shù).【詳解】∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故選:SKIPIF1<0.11.(2022·湖北十堰·三模)設(shè)集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】利用集合的補(bǔ)集運(yùn)算求解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0.故選:C12.(2022·山西臨汾·三模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)對數(shù)函數(shù)的單調(diào)性,結(jié)合解一元二次不等式的方法、集合交集的定義進(jìn)行求解即可.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故選:D13.(2022·天津·一模)已知集合SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】先化簡集合SKIPIF1<0,再求SKIPIF1<0【詳解】SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0故選:B14.(2022·四川遂寧·三模(文))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)集合的交集運(yùn)算即可求解.【詳解】解:SKIPIF1<0,SKIPIF1<0,故選:C.15.(2022·安徽·合肥市第七中學(xué)二模(理))集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0(
)A.(-2,2) B.(-1,2) C.(-2,3) D.(-1,3)【答案】B【解析】【分析】先求集合SKIPIF1<0,進(jìn)一步求出答案.【詳解】集合SKIPIF1<0SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故選:B.二、多選題1.(2022·山東濟(jì)南·一模)平面內(nèi)到兩定點(diǎn)距離之積為常數(shù)的點(diǎn)的軌跡稱為卡西尼卵形線,它是1675年卡西尼在研究土星及其衛(wèi)星的運(yùn)行規(guī)律時發(fā)現(xiàn)的.已知在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,動點(diǎn)P滿足SKIPIF1<0,其軌跡為一條連續(xù)的封閉曲線C.則下列結(jié)論正確的是(
)A.曲線C與y軸的交點(diǎn)為SKIPIF1<0,SKIPIF1<0 B.曲線C關(guān)于x軸對稱C.SKIPIF1<0面積的最大值為2 D.SKIPIF1<0的取值范圍是SKIPIF1<0【答案】ABD【解析】【分析】根據(jù)給定條件,求出曲線C的方程,由SKIPIF1<0判斷A;由曲線方程對稱性判斷B;取特值計算判斷C;求出SKIPIF1<0的范圍計算判斷D作答.【詳解】設(shè)點(diǎn)SKIPIF1<0,依題意,SKIPIF1<0,整理得:SKIPIF1<0,對于A,當(dāng)SKIPIF1<0時,解得SKIPIF1<0,即曲線C與y軸的交點(diǎn)為SKIPIF1<0,SKIPIF1<0,A正確;對于B,因SKIPIF1<0,由SKIPIF1<0換SKIPIF1<0方程不變,曲線C關(guān)于x軸對稱,B正確;對于C,當(dāng)SKIPIF1<0時,SKIPIF1<0,即點(diǎn)SKIPIF1<0在曲線C上,SKIPIF1<0,C不正確;對于D,由SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,于是得SKIPIF1<0,解得SKIPIF1<0,D正確.故選:ABD【點(diǎn)睛】結(jié)論點(diǎn)睛:曲線C的方程為SKIPIF1<0,(1)如果SKIPIF1<0,則曲線C關(guān)于y軸對稱;(2)如果SKIPIF1<0,則曲線C關(guān)于x軸對稱;(3)如果SKIPIF1<0,則曲線C關(guān)于原點(diǎn)對稱.2.(2022·湖南·一模)下列選項中,與“SKIPIF1<0”互為充要條件的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【解析】【分析】先求出SKIPIF1<0的范圍,再逐項求出對應(yīng)的范圍,從而可得正確的選項.【詳解】SKIPIF1<0的解為SKIPIF1<0,對于A,因為SKIPIF1<0為SKIPIF1<0的真子集,故A不符合;對于B,因為SKIPIF1<0等價于SKIPIF1<0,其范圍也是SKIPIF1<0,故B符合;對于C,SKIPIF1<0即為SKIPIF1<0,其解為SKIPIF1<0,故C符合;對于D,SKIPIF1<0即SKIPIF1<0,其解為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的真子集,故D不符合,故選:BC.題型二:一元二次不等式的恒成立問題一、單選題1.(2022·河南·襄城縣教育體育局教學(xué)研究室二模(文))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0恒成立,則實數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)函數(shù)解析式畫出函數(shù)圖象,即可判斷函數(shù)為奇函數(shù)且在定義域上單調(diào)遞減,則不等式等價于SKIPIF1<0,即SKIPIF1<0恒成立,再分SKIPIF1<0和SKIPIF1<0兩種情況討論,當(dāng)SKIPIF1<0時SKIPIF1<0,即可求出參數(shù)SKIPIF1<0的取值范圍;【詳解】解:因為SKIPIF1<0,所以函數(shù)圖象如下所示:由函數(shù)圖象可知函數(shù)為定義域SKIPIF1<0上單調(diào)遞減的奇函數(shù),當(dāng)SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0恒成立,即SKIPIF1<0恒成立,當(dāng)SKIPIF1<0,顯然不成立,當(dāng)SKIPIF1<0時,則m>0Δ=81?48m≤0,解得SKIPIF1<0,即SKIPIF1<0;故選:C2.(2022·四川攀枝花·二模(文))已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】先判斷SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立;若SKIPIF1<0在SKIPIF1<0上恒成立,轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立.【詳解】當(dāng)SKIPIF1<0時,由SKIPIF1<0恒成立,二次函數(shù)的對稱軸為SKIPIF1<0,(1)當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0恒成立,(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0綜上可知,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立;當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)單增,又SKIPIF1<0,所以SKIPIF1<0;綜上可知,SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D3.(2022·陜西·寶雞市渭濱區(qū)教研室一模(理))若“SKIPIF1<0,使得SKIPIF1<0”是假命題,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)題意,“SKIPIF1<0,使得SKIPIF1<0”是真命題,進(jìn)而根據(jù)二次不等式恒成立求解即可.【詳解】解:因為“SKIPIF1<0,使得SKIPIF1<0”是假命題,所以“SKIPIF1<0,使得SKIPIF1<0”是真命題,所以SKIPIF1<0,解得SKIPIF1<0.所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B4.(2022·天津河?xùn)|·一模)已知函數(shù)SKIPIF1<0設(shè)SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0在R上恒成立,則a的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【詳解】不等式SKIPIF1<0為SKIPIF1<0(*),當(dāng)SKIPIF1<0時,(*)式即為SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0(SKIPIF1<0時取等號),SKIPIF1<0(SKIPIF1<0時取等號),所以SKIPIF1<0,當(dāng)SKIPIF1<0時,(*)式為SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0(當(dāng)SKIPIF1<0時取等號),SKIPIF1<0(當(dāng)SKIPIF1<0時取等號),所以SKIPIF1<0,綜上SKIPIF1<0.故選A.【考點(diǎn)】不等式、恒成立問題【名師點(diǎn)睛】首先滿足SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0去解決,由于涉及分段函數(shù)問題要遵循分段處理原則,分別對SKIPIF1<0的兩種不同情況進(jìn)行討論,針對每種情況根據(jù)SKIPIF1<0的范圍,利用極端原理,求出對應(yīng)的SKIPIF1<0的范圍.5.(2022·山西運(yùn)城·模擬預(yù)測(理))已知橢圓SKIPIF1<0的上頂點(diǎn)為A,離心率為e,若在C上存在點(diǎn)P,使得SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】設(shè)出SKIPIF1<0,利用SKIPIF1<0得到SKIPIF1<0在區(qū)間SKIPIF1<0上有解,結(jié)合端點(diǎn)值的符號得到SKIPIF1<0,求出SKIPIF1<0的最小值.【詳解】易知SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即方程SKIPIF1<0在區(qū)間SKIPIF1<0上有解,令SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以只需SKIPIF1<0,即SKIPIF1<0解得:SKIPIF1<0.故選:C.6.(2022·河北·模擬預(yù)測)“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】B【解析】【分析】SKIPIF1<0,列出不等式,求出SKIPIF1<0,從而判斷出答案.【詳解】SKIPIF1<0,則要滿足SKIPIF1<0,解得:SKIPIF1<0,因為SKIPIF1<0,但SKIPIF1<0故“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:B7.(2022·天津·耀華中學(xué)模擬預(yù)測)對于任意實數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】分SKIPIF1<0與SKIPIF1<0兩種情況進(jìn)行討論,求解出答案.【詳解】當(dāng)SKIPIF1<0時,不等式為SKIPIF1<0恒成立,故滿足要求;當(dāng)SKIPIF1<0時,要滿足:SKIPIF1<0,解得:SKIPIF1<0,綜上:實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D8.(2022·黑龍江齊齊哈爾·二模(文))若命題“SKIPIF1<0”為假命題,則實數(shù)x的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】等價于“SKIPIF1<0”為真命題.令SKIPIF1<0,解不等式SKIPIF1<0即得解.【詳解】解:命題“SKIPIF1<0”為假命題,其否定為真命題,即“SKIPIF1<0”為真命題.令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)x的取值范圍為SKIPIF1<0.故選:C9.(2022·新疆阿勒泰·三模(理))“SKIPIF1<0”是“SKIPIF1<0使SKIPIF1<0成立”為假命題的(
)A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】B【解析】【分析】“SKIPIF1<0使SKIPIF1<0成立”為假命題,則“SKIPIF1<0使SKIPIF1<0成立”為真命題,對a分情況討論,求得SKIPIF1<0,結(jié)合充分、必要條件判定方法,即可得解.【詳解】解:“SKIPIF1<0使SKIPIF1<0成立”為假命題,則“SKIPIF1<0使SKIPIF1<0成立”為真命題,當(dāng)SKIPIF1<0時成立,當(dāng)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,綜合得SKIPIF1<0,則“SKIPIF1<0”是SKIPIF1<0的充分不必要條件.故選:B.10.(2022·北京石景山·一模)“SKIPIF1<0”是“SKIPIF1<0在SKIPIF1<0上恒成立”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】【分析】在給定區(qū)間內(nèi)恒成立問題,可參變分離求解后判斷【詳解】SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0故SKIPIF1<0“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件故選:B二、多選題1.(2022·河北·石家莊二中模擬預(yù)測)命題“SKIPIF1<0”為真命題的一個充分不必要條件是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】【分析】先求命題“SKIPIF1<0”為真命題的等價條件,再結(jié)合充分不必要的定義逐項判斷即可.【詳解】因為SKIPIF1<0為真命題,所以SKIPIF1<0或SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是命題“SKIPIF1<0”為真命題充分不必要條件,A對,所以SKIPIF1<0是命題“SKIPIF1<0”為真命題充要條件,B錯,所以SKIPIF1<0是命題“SKIPIF1<0”為真命題充分不必要條件,C對,所以SKIPIF1<0是命題“SKIPIF1<0”為真命題必要不充分條件,D錯,故選:AC2.(2022·全國·模擬預(yù)測)已知二次函數(shù)SKIPIF1<0,若對任意SKIPIF1<0,則(
)A.當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立B.當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立C.SKIPIF1<0使得SKIPIF1<0成立D.對任意SKIPIF1<0,SKIPIF1<0,均有SKIPIF1<0恒成立【答案】AD【解析】【分析】二次函數(shù)開口向下,對稱軸為SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)對選項逐一判斷即可.【詳解】依題意,二次函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0.因為SKIPIF1<0,所以其函數(shù)圖象為開口向下的拋物線,對于A選項,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0恒成立,所以A選項正確;對于B選項,當(dāng)SKIPIF1<0,若SKIPIF1<0,則不等式可化為SKIPIF1<0,所以SKIPIF1<0;若SKIPIF1<0,則不等式可化為SKIPIF1<0,所以SKIPIF1<0,所以B選項錯誤;對于C選項,因為SKIPIF1<0,所以SKIPIF1<0,所以二次函數(shù)SKIPIF1<0的圖象開口向下,且二次函數(shù)與x軸無交點(diǎn),所以不存在SKIPIF1<0使得SKIPIF1<0成立,所以C選項錯誤;對于D選項,SKIPIF1<0,所以對任意SKIPIF1<0,SKIPIF1<0,均有SKIPIF1<0恒成立,所以D選項正確,故選:AD.三、填空題1.(2022·山東聊城·三模)命題“SKIPIF1<0,SKIPIF1<0”為假命題,則實數(shù)SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【解析】【分析】分析可知命題“SKIPIF1<0,SKIPIF1<0”為真命題,分SKIPIF1<0、SKIPIF1<0兩種情況討論,結(jié)合已知條件可得出關(guān)于SKIPIF1<0的不等式(組),綜合可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】由題意可知,命題“SKIPIF1<0,SKIPIF1<0”為真命題.①當(dāng)SKIPIF1<0時,可得SKIPIF1<0.若SKIPIF1<0,則有SKIPIF1<0,合乎題意;若SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,不合乎題意;②若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.2.(2022·浙江嘉興·二模)已知函數(shù)SKIPIF1<0的定義域為R,則SKIPIF1<0的最大值是___________.【答案】SKIPIF1<0【解析】【分析】由題意得到SKIPIF1<0,SKIPIF1<0恒成立,進(jìn)而得到SKIPIF1<0,即SKIPIF1<0,再代入SKIPIF1<0,令SKIPIF1<0,利用基本不等式求解.【詳解】解:因為函數(shù)SKIPIF1<0的定義域為R,所以SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最大值是SKIPIF1<0,故答案為:SKIPIF1<03.(2022·江蘇江蘇·二模)已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0對一切SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的最大值為___________.【答案】SKIPIF1<0##SKIPIF1<00.25【解析】【分析】根據(jù)題設(shè)條件畫出函數(shù)的圖象,結(jié)合圖象可求實數(shù)SKIPIF1<0的最大值.【詳解】因為SKIPIF1<0,故SKIPIF1<0的圖象關(guān)于SKIPIF1<0中心對稱當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的圖象如圖所示:結(jié)合圖象可得:只需當(dāng)SKIPIF1<0時,SKIPIF1<0即可,即SKIPIF1<0,故SKIPIF1<0,故答案為:SKIPIF1<0.四、解答題1.(2022·上海奉賢·二模)對于函數(shù)SKIPIF1<0,如果對于定義域SKIPIF1<0中任意給定的實數(shù)SKIPIF1<0,存在非負(fù)實數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立,稱函數(shù)SKIPIF1<0具有性質(zhì)SKIPIF1<0.(1)判別函數(shù)SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,SKIPIF1<0是否具有性質(zhì)SKIPIF1<0,請說明理由;(2)函數(shù)SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0具有性質(zhì)SKIPIF1<0,求SKIPIF1<0滿足的條件;(3)若函數(shù)SKIPIF1<0的定義域為一切實數(shù),SKIPIF1<0的值域為SKIPIF1<0,存在常數(shù)SKIPIF1<0且SKIPIF1<0具有性質(zhì)SKIPIF1<0,判別SKIPIF1<0是否具有性質(zhì)SKIPIF1<0,請說明理由.【答案】(1)答案見解析;(2)SKIPIF1<0;(3)SKIPIF1<0具有性質(zhì)SKIPIF1<0,理由見解析.【解析】【分析】(1)由性質(zhì)SKIPIF1<0的定義,結(jié)合作差法判斷函數(shù)是否具有性質(zhì)SKIPIF1<0即可;(2)根據(jù)已知條件有SKIPIF1<0對任意SKIPIF1<0恒成立,討論SKIPIF1<0、SKIPIF1<0判斷不等式是否恒成立,即可得參數(shù)范圍;(3)由SKIPIF1<0的性質(zhì)可得SKIPIF1<0,再根據(jù)對數(shù)函數(shù)的單調(diào)性及性質(zhì)SKIPIF1<0定義判斷SKIPIF1<0是否具有性質(zhì)SKIPIF1<0.(1)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0不具有性質(zhì)SKIPIF1<0;SKIPIF1<0,SKIPIF1<0恒成立,故SKIPIF1<0,SKIPIF1<0具有性質(zhì)SKIPIF1<0.(2)由SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0對任意SKIPIF1<0恒成立,顯然SKIPIF1<0時,上式不等式成立;SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,對任意SKIPIF1<0不恒成立,舍去;綜上,SKIPIF1<0.(3)因為SKIPIF1<0具有性質(zhì)SKIPIF1<0,所以SKIPIF1<0,因為函數(shù)的值域為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0具有性質(zhì)SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第三問,注意應(yīng)用性質(zhì)SKIPIF1<0、不等式性質(zhì)得到SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,進(jìn)而有SKIPIF1<0,結(jié)合對數(shù)函數(shù)的單調(diào)性判斷結(jié)論.2.(2022·江西上饒·二模(理))已知SKIPIF1<0.(1)解關(guān)于x的不等式SKIPIF1<0;(2)若對任意實數(shù)x,及任意正實數(shù)a,b,且SKIPIF1<0,都有SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)對絕對值進(jìn)行分類討論,即可求解(2)根據(jù)基本不等式,可得SKIPIF1<0,進(jìn)而問題轉(zhuǎn)化為SKIPIF1<0,進(jìn)而求出所求的SKIPIF1<0范圍(1)SKIPIF1<0可得,當(dāng)SKIPIF1<0時,不等式SKIPIF1<0等價于SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式SKIPIF1<0等價于SKIPIF1<0,此時不等式恒成立,SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式SKIPIF1<0等價于SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0綜上所述,不等式SKIPIF1<0的解集是SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時成立,所以,對任意實數(shù)x,及任意正實數(shù)a,b,且SKIPIF1<0,都有SKIPIF1<0恒成立,等價于SKIPIF1<0,設(shè)SKIPIF1<0,由(1)得,SKIPIF1<0,明顯可見,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0有最小值,SKIPIF1<0,所以,此時實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,綜上所述,實數(shù)SKIPIF1<0的取值范圍SKIPIF1<0題型三:分式不等式的解法一、單選題1.(2022·安徽黃山·一模(理))設(shè)集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】根據(jù)集合交補(bǔ)集定義運(yùn)算即可.【詳解】由SKIPIF1<0,SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0故選:C2.(2022·四川·宜賓市敘州區(qū)第一中學(xué)校二模(文))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】解出集合SKIPIF1<0,利用交集的定義可求得集合SKIPIF1<0.【詳解】SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0.故選:D.3.(2022·山西·太原五中二模(文))下列命題中正確的是(
)A.命題“SKIPIF1<0,SKIPIF1<0”的否定是“SKIPIF1<0,SKIPIF1<0”B.已知SKIPIF1<0與SKIPIF1<0為非零向量,則“SKIPIF1<0”是“SKIPIF1<0與SKIPIF1<0的夾角為銳角”的充要條件C.“SKIPIF1<0”是“不等式SKIPIF1<0成立”的必要不充分條件D.已知SKIPIF1<0,SKIPIF1<0,則M是N的充分不必要條件【答案】D【解析】【分析】利用特稱命題的否定是全稱命題判斷A選項;利用平面向量的數(shù)量積和充分必要條件的定義判斷B選項;解不等式SKIPIF1<0,再利用充分必要條件的定義判斷C選項;利用充分必要條件的定義直接判斷D選項.【詳解】對于A,命題“SKIPIF1<0,SKIPIF1<0”為特稱命題,又特稱命題的否定是全稱命題,可知其否定為:“SKIPIF1<0,SKIPIF1<0”,故A錯誤;對于B,由向量數(shù)量積定義可知,若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為銳角或零角;若SKIPIF1<0與SKIPIF1<0的夾角為銳角,則一定有SKIPIF1<0,故“SKIPIF1<0”是“SKIPIF1<0與SKIPIF1<0的夾角為銳角”的必要不充分條件,故B錯誤;對于C,不等式SKIPIF1<0,解不等式得:SKIPIF1<0或SKIPIF1<0,故“SKIPIF1<0”是“不等式SKIPIF1<0成立”的充分不必要條件,故C錯誤;對于D,SKIPIF1<0,SKIPIF1<0不能推出SKIPIF1<0,故“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,故D正確.故選:D【點(diǎn)睛】易錯點(diǎn)睛:本題考查含一個量詞的命題的否定,充分必要條件的判斷,兩個向量數(shù)量積的定義,解不等式,在判斷B選項時,要注意當(dāng)兩個向量的數(shù)量積大于0時,這兩個向量也可以同向共線,此時兩個向量的夾角為零角,考查學(xué)生的邏輯推理能力與轉(zhuǎn)化能力,綜合性強(qiáng),屬于一般題.4.(2022·河南河南·一模(理))若SKIPIF1<0成立的一個充分不必要條件是SKIPIF1<0,則實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】解一元二次不等式?分式不等式求得題設(shè)條件為真時對應(yīng)SKIPIF1<0的范圍,再根據(jù)條件的充分不必要關(guān)系求參數(shù)a的取值范圍.【詳解】由SKIPIF1<0,可得:SKIPIF1<0;由SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0;∵SKIPIF1<0成立的一個充分不必要條件是SKIPIF1<0,∴SKIPIF1<0,可得SKIPIF1<0.故選:D.5.(2022·遼寧·一模)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】排除法可得.【詳解】取SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0,故排除ABD.故選:C6.(2022·河南·三模(理))若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】分別求出集合A,B,根據(jù)集合的交集和補(bǔ)集運(yùn)算得出答案.【詳解】由SKIPIF1<0,則SKIPIF1<0解得:SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0=SKIPIF1<0或SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:A.7.(2022·新疆喀什·一模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】解分式不等式,求得集合A,再根據(jù)集合的交集運(yùn)算,求得答案?!驹斀狻拷獠坏仁絊KIPIF1<0,則SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0,故選:A8.(2022·天津·一模)設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】B【解析】【分析】解不等式,根據(jù)充分必要性分別判斷.【詳解】解不等式可得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,反之不成立,所以“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件,故選:B.9.(2022·江西南昌·三模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】解不等式,求出集合A和B,進(jìn)而求出交集.【詳解】SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0,故SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024國有企業(yè)改革借款合同
- 2024商業(yè)用地租賃合同:租賃土地的環(huán)保公益活動規(guī)定
- 生態(tài)治理工程招投標(biāo)法律解讀
- 企業(yè)內(nèi)部勞動爭議處理規(guī)定
- 水上運(yùn)動旅店租賃合同
- 煤炭音樂廳煤倉施工合同
- 商業(yè)綜合體箱涵施工合同
- 危重病患護(hù)理規(guī)范與流程
- 體育賽事合作簽約管理辦法
- 婚禮裝飾租賃服務(wù)合同模板
- 2024年俄羅斯高空作業(yè)平臺車行業(yè)應(yīng)用與市場潛力評估
- 2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(97分)
- 室外管網(wǎng)施工組織設(shè)計
- 2023國產(chǎn)服務(wù)器操作系統(tǒng)
- 游樂園的冰雪項目設(shè)計
- 書法鑒賞智慧樹知到期末考試答案章節(jié)答案2024年紹興文理學(xué)院
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- 2024年遼寧生態(tài)工程職業(yè)學(xué)院單招職業(yè)技能測試題庫及答案解析
- -2024屆高考英語沖刺復(fù)習(xí)高中雙寫尾字母及易錯單詞總結(jié)清單
- 裝飾裝修工程質(zhì)量保證措施和創(chuàng)優(yōu)計劃
- 格林巴利綜合征神經(jīng)內(nèi)科
評論
0/150
提交評論