2024屆安徽省“皖南八校”數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024屆安徽省“皖南八校”數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024屆安徽省“皖南八校”數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024屆安徽省“皖南八校”數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024屆安徽省“皖南八校”數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆安徽省“皖南八?!睌?shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在正四棱柱中,,點為棱的中點,過,,三點的平面截正四棱柱所得的截面面積為()A.2 B.C. D.2.如圖,在平面直角坐標系中,角的始邊為軸的非負半軸,終邊與單位圓的交點為,將繞坐標原點逆時針旋轉至,過點作軸的垂線,垂足為.記線段的長為,則函數(shù)的圖象大致是A. B.C. D.3.在三棱柱中,各棱長相等,側棱垂直于底面,點是側面的中心,則與平面所成角的大小是()A. B.C. D.4.設函數(shù)在區(qū)間上為偶函數(shù),則的值為()A.-1 B.1C.2 D.35.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,若,則不等式解集為A. B.C. D.6.已知為銳角,為鈍角,,則()A. B.C. D.7.如圖,的斜二測直觀圖為等腰,其中,則原的面積為()A.2 B.4C. D.8.設f(x)為定義在R上的奇函數(shù),當x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)=()A.3 B.1C.-1 D.-39.下列函數(shù)是偶函數(shù)且值域為的是()①;②;③;④A.①② B.②③C.①④ D.③④10.“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺.當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,分別表示烏龜和兔子所行的路程(為時間),則下圖與故事情節(jié)相吻合的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)滿足下列四個條件中的三個:①函數(shù)是奇函數(shù);②函數(shù)在區(qū)間上單調(diào)遞增;③;④在y軸右側函數(shù)的圖象位于直線上方,寫出一個符合要求的函數(shù)________________________.12.向量與,則向量在方向上的投影為______13.對于定義在上的函數(shù),如果存在區(qū)間,同時滿足下列兩個條件:①在區(qū)間上是單調(diào)遞增的;②當時,函數(shù)的值域也是,則稱是函數(shù)的一個“遞增黃金區(qū)間”.下列函數(shù)中存在“遞增黃金區(qū)間”的是:___________.(填寫正確函數(shù)的序號)①;②;③;④.14.已知,則____________.15.把函數(shù)的圖像向右平移后,再把各點橫坐標伸長到原來的2倍,所得函數(shù)解析式是______16.已知是定義在上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述:①是周期函數(shù);②是它的一條對稱軸;③是它圖象的一個對稱中心;④當時,它一定取最大值;其中描述正確的是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,,,.(1)求證:平面;(2)求三棱錐的體積.18.已知函數(shù)f(x)=ln(ex+1)+ax是偶函數(shù),g(x)=f(lnx)(e=2.71828…)(Ⅰ)求實數(shù)a的值;(Ⅱ)判斷并證明函數(shù)g(x)在區(qū)間(0,1)上的單調(diào)性19.已知,,,.(1)求的值;(2)求的值:(3)求的值.20.如圖,三棱柱中,側棱垂直底面,,,點是棱的中點(1)證明:平面平面;(2)求三棱錐的體積21.已知二次函數(shù).(1)若函數(shù)滿足,且.求的解析式;(2)若對任意,不等式恒成立,求的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)題意畫出截面,得到截面為菱形,從而可求出截面的面積.【詳解】取的中點,的中點,連接,因為該幾何體為正四棱柱,∴故四邊形為平行四邊形,所以,又,∴,同理,且,所以過,,三點平面截正四棱柱所得的截面為菱形,所以該菱形的面積為.故選:D2、B【解析】,所以選B.點睛:有關函數(shù)圖象識別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復.(2)由實際情景探究函數(shù)圖象.關鍵是將問題轉化為熟悉的數(shù)學問題求解,要注意實際問題中的定義域問題.3、C【解析】如圖,取中點,則平面,故,因此與平面所成角即為,設,則,,即,故,故選:C.4、B【解析】由區(qū)間的對稱性得到,解出b;利用偶函數(shù),得到,解出a,即可求出.【詳解】因為函數(shù)在區(qū)間上為偶函數(shù),所以,解得又為偶函數(shù),所以,即,解得:a=-1.所以.故選:B5、B【解析】,又函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,所以,解得.考點:偶函數(shù)的性質(zhì).【思路點睛】本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進行轉化是解決本題的關鍵.根據(jù)函數(shù)奇偶性可得,再根據(jù)函數(shù)的單調(diào)性,可得;然后再解不等式即可求出結果6、C【解析】利用平方關系和兩角和的余弦展開式計算可得答案.【詳解】因為為銳角,為鈍角,,所以,,則.故選:C.7、D【解析】首先算出直觀圖面積,再根據(jù)平面圖形與直觀圖面積比為求解即可.【詳解】因為等腰是一平面圖形的直觀圖,直角邊,所以直角三角形的面積是.又因為平面圖形與直觀圖面積比為,所以原平面圖形的面積是.故選:D8、D【解析】∵f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x+2x+b(b為常數(shù)),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故選D9、C【解析】根據(jù)奇偶性的定義依次判斷,并求函數(shù)的值域即可得答案.【詳解】對于①,是偶函數(shù),且值域為;對于②,是奇函數(shù),值域為;對于③,是偶函數(shù),值域為;對于④,偶函數(shù),且值域為,所以符合題意的有①④故選:C.10、B【解析】分別分析烏龜和兔子隨時間變化它們的路程變化情況,即直線的斜率變化即可.【詳解】解:對于烏龜,其運動過程分為兩段:從起點到終點烏龜沒有停歇,一直以勻速前進,其路程不斷增加;到終點后,等待兔子那段時間路程不變;對于兔子,其運動過程分三段:開始跑的快,即速度大,所以路程增加的快;中間由于睡覺,速度為零,其路程不變;醒來時追趕烏龜,速度變大,所以路程增加的快;但是最終是烏龜?shù)竭_終點用的時間短.故選:B【點睛】本題考查利用函數(shù)圖象對實際問題進行刻畫,是基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】滿足①②④的一個函數(shù)為,根據(jù)奇偶性以及單調(diào)性,結合反比例函數(shù)的性質(zhì)證明①②④.【詳解】滿足①②④對于①,函數(shù)的定義域為關于原點對稱,且,即為奇函數(shù);對于②,任取,且因為,所以,即函數(shù)在區(qū)間上單調(diào)遞增;對于④,令,當時,,即在y軸右側函數(shù)的圖象位于直線上方故答案為:【點睛】關鍵點睛:解決本題的關鍵在于利用定義證明奇偶性以及單調(diào)性.12、【解析】在方向上的投影為考點:向量的投影13、②③【解析】由條件可得方程有兩個實數(shù)解,然后逐一判斷即可.【詳解】∵在上單調(diào)遞增,由條件②可知,即方程有兩個實數(shù)解;∵x+1=x無實數(shù)解,∴①不存在“遞增黃金區(qū)間”;∵的兩根為:1和2,不難驗證區(qū)間[1,2]是函數(shù)的一個“遞增黃金區(qū)間”;在同一坐標系中畫出與的圖象如下:由圖可得方程有兩個根,∴③也存在“遞增黃金區(qū)間”;在同一坐標系中畫出與的圖象如下:所以沒有實根,∴④不存在.故答案為:②③.14、【解析】求得函數(shù)的最小正周期為,進而計算出的值(其中),再利用周期性求解即可.【詳解】函數(shù)的最小正周期為,當時,,,,,,,所以,,,因此,.故答案為:.15、【解析】利用三角函數(shù)圖像變換規(guī)律直接求解【詳解】解:把函數(shù)的圖像向右平移后,得到,再把各點橫坐標伸長到原來的2倍,得到,故答案為:16、①③【解析】先對已知是定義在的奇函數(shù),且為偶函數(shù)用定義轉化為恒等式,再由兩個恒等式進行合理變形得出與四個命題有關的結論,通過推理證得①③正確.【詳解】因為為偶函數(shù),所以,即是它的一條對稱軸;又因為是定義在上的奇函數(shù),所以,即,則,,即是周期函數(shù),即①正確;因為是它的一條對稱軸且,所以()是它的對稱軸,即②錯誤;因為函數(shù)是奇函數(shù)且是以為周期周期函數(shù),所以,所以是它圖象的一個對稱中心,即③正確;因為是它的一條對稱軸,所以當時,函數(shù)取得最大值或最小值,即④不正確.故答案為:①③.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)先證明AC⊥BE,再取的中點,連接,經(jīng)計算,利用勾股定理逆定理得到AC⊥BC,然后利用線面垂直的判定定理證得結論;(2)利用線面垂直的判定定理證得CM⊥平面BEF,即為所求三棱錐的高,進而計算得到其體積.【詳解】解:(1)證明:∵四邊形為矩形∴∵平面∴平面∵平面∴.如圖,取的中點,連接,∴∵,,∴四邊形是正方形.∴∴,∵∴∴是直角三角形∴.∵,、平面∴平面(2)由(1)知:∵平面,平面∴∵,、平面∴平面,∴平面即:是三棱錐的高∴【點睛】本題考查線面垂直的證明,棱錐的體積的計算,屬基礎題.在利用線面垂直的判定定理證明線面垂直時一定要將條件表述全面,“兩個垂直,一個相交”不可缺少.18、(I)a=(II)答案見解析【解析】(I)由函數(shù)f(x)=ln(ex+1)+ax偶函數(shù),可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函數(shù)單調(diào)性的定義確定函數(shù)的單調(diào)性即可.【詳解】(I)∵函數(shù)f(x)=ln(ex+1)+ax是偶函數(shù),∴f(-x)=f(x),∴l(xiāng)n(e-x+1)-ax=ln(ex+1)+ax,化為:(2a-1)x=0,x∈R,解得a=經(jīng)過驗證滿足條件∴a=(II)由(I)可得:f(x)=ln(ex+1)∴g(x)=f(lnx)=ln(x+1)則函數(shù)g(x)在區(qū)間(0,1)上單調(diào)遞增設,則,,,,,,∴函數(shù)g(x)在區(qū)間(0,1)上單調(diào)遞增【點睛】本題考查了函數(shù)的奇偶性與單調(diào)性,考查了推理能力與計算能力,屬于中檔題19、(1);(2);(3).【解析】(1)同角三角函數(shù)平方關系求得,,再由及差角余弦公式求值即可.(2)由誘導公式、二倍角余弦公式可得,即可求值.(3)由(1)及和角正余弦公式求、,由(2)及平方關系求,最后應用差角余弦公式求,結合角的范圍求.【小問1詳解】由題設,,,∴,,又.【小問2詳解】.【小問3詳解】由,則,由,則,∴,,又,,則,∴,而,故.20、(1)證明見解析;(2)【解析】(1)由題意得,,即可得到平面,從而得到⊥,再根據(jù),得到,證得平面,即可得證;(2)首先求出,利用勾股定理求出,即可求出,再根據(jù)錐體的體積公式計算可得【詳解】解:(1)證明:由題設知,,,平面,所以平面,又因為平面,所以因為,所以,即因為,平面,所以平面,又因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論