版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省林州一中2024屆數(shù)學高一上期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)(為自然對數(shù)的底數(shù)),若對任意,不等式都成立,則實數(shù)的取值范圍是A. B.C. D.2.某幾何體的三視圖如圖所示,數(shù)量單位為cm,它的體積是()A. B.C. D.3.下列結論中正確的是A.若角的終邊過點,則B.若是第二象限角,則為第二象限或第四象限角C.若,則D.對任意,恒成立4.下列函數(shù)中為奇函數(shù),且在定義域上為增函數(shù)的有()A. B.C. D.5.函數(shù)的圖像恒過定點,則的坐標是()A. B.C. D.6.下列各組中的兩個函數(shù)表示同一函數(shù)的是()A. B.y=lnx2,y=2lnxC D.7.下列全稱量詞命題與存在量詞命題中:①設A、B為兩個集合,若,則對任意,都有;②設A、B為兩個集合,若,則存在,使得;③是無理數(shù),是有理數(shù);④是無理數(shù),是無理數(shù).其中真命題的個數(shù)是()A.1 B.2C.3 D.48.已知函數(shù)(,,)的圖象如圖所示,則()A.B.對于任意,,且,都有C.,都有D.,使得9.命題“,有”的否定是()A.,使 B.,有C.,使 D.,使10.函數(shù)零點所在的大致區(qū)間的A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),,對,用表示,中的較大者,記為,則的最小值為______.12.已知向量的夾角為,,則__________.13.已知,函數(shù),若,則______,此時的最小值是______.14.已知函數(shù)的圖象(且)恒過定點P,則點P的坐標是______,函數(shù)的單調遞增區(qū)間是__________.15.直線與直線平行,則實數(shù)的值為_______.16.已知,,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設全集U是實數(shù)集,集合,集合.(1)求集合A,集合B;(2)求.18.已知函數(shù)(1)判斷的奇偶性,并加以證明;(2)求函數(shù)的值域19.設函數(shù),其中.(1)當時,求函數(shù)的零點;(2)若,求函數(shù)的最大值.20.已知,函數(shù).(1)當時,解不等式;(2)若關于的方程的解集中恰有兩個元素,求的取值范圍;(3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.21.已知函數(shù),若同時滿足以下條件:①在D上單調遞減或單調遞增;②存在區(qū)間,使在上的值域是,那么稱為閉函數(shù)(1)求閉函數(shù)符合條件②的區(qū)間;(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間;若不是請說明理由;(3)若是閉函數(shù),求實數(shù)的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意結合函數(shù)的單調性和函數(shù)的奇偶性求解不等式即可.【詳解】由函數(shù)的解析式可知函數(shù)為定義在R上的增函數(shù),且函數(shù)為奇函數(shù),故不等式即,據(jù)此有,即恒成立;當時滿足題意,否則應有:,解得:,綜上可得,實數(shù)的取值范圍是.本題選擇C選項.【點睛】對于求值或范圍的問題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調性,再利用其單調性脫去函數(shù)的符號“f”,轉化為解不等式(組)的問題.2、C【解析】由三視圖可知,此幾何體為直角梯形的四棱錐,根據(jù)四棱錐的體積公式即可求出結果.【詳解】由三視圖復原幾何體為四棱錐,如圖:它高為,底面是直角梯形,長底邊為,上底為,高為,棱錐的高垂直底面梯形的高的中點,所以幾何體的體積為:故選:C【點睛】本題考查了由三視圖求幾何體的體積,解答此類問題的關鍵是判斷幾何體的形狀以及幾何尺寸,同時需熟記錐體的體積公式,屬于基礎題.3、D【解析】對于A,當時,,故A錯;對于B,取,它是第二象限角,為第三象限角,故B錯;對于C,因且,故,所以,故C錯;對于D,因為,所以,所以,故D對,綜上,選D點睛:對于銳角,恒有成立4、C【解析】根據(jù)函數(shù)的奇偶性,可排除A,B;說明的奇偶性以及單調性,可判斷C;根據(jù)的單調性,判斷D.【詳解】函數(shù)為非奇非偶函數(shù),故A錯;函數(shù)為偶函數(shù),故B錯;函數(shù),滿足,故是奇函數(shù),在定義域R上,是單調遞增函數(shù),故C正確;函數(shù)在上是增函數(shù),在上是增函數(shù),在定義域上不單調,故D錯,故選:C5、D【解析】利用指數(shù)函數(shù)的性質即可得出結果.【詳解】由指數(shù)函數(shù)恒過定點,所以函數(shù)的圖像恒過定點.故選:D6、D【解析】逐項判斷函數(shù)的定義域與對應法則是否相同,即可得出結果.【詳解】對于A,
定義域為,而定義域為,定義域相同,但對應法則不同,故不是同一函數(shù),排除A;對于B,定義域,而定義域為,所以定義域不同,不是同一函數(shù),排除B;對于C,
定義域為,而定義域為,所以定義域不同,不是同一函數(shù),排除C;對于D,與的定義域均為,且,對應法則一致,所以是同一函數(shù),D正確.故選:D7、B【解析】對于命題①②,利用全稱量詞命題與存在量詞命題的定義結合集合包含與不包含的意義直接判斷;對于命題③④,舉特例說明判斷作答.【詳解】對于①,因集合A、B滿足,則由集合包含關系的定義知,對任意,都有,①是真命題;對于②,因集合A、B滿足,則由集合不包含關系的定義知,存在,使得,②是真命題;對于③,顯然是無理數(shù),也是無理數(shù),則③是假命題;對于④,顯然是無理數(shù),卻是有理數(shù),則④是假命題.所以①②是真命題.故選:B8、C【解析】根據(jù)給定函數(shù)圖象求出函數(shù)的解析式,再逐一分析各個選項即可判斷作答.【詳解】觀察函數(shù)的圖象得:,令的周期為,則,即,,由,且得:,于是有,對于A,,A不正確;對于B,取且,滿足,,且,而,,此時,B不正確;對于C,,,,即,都有,C正確;對于D,由得:,解得:,令,解得與矛盾,D不正確.故選:C9、D【解析】全稱命題的否定:將任意改存在并否定原結論,即可知正確選項.【詳解】由全稱命題的否定為特稱命題,∴原命題的否定為.故選:D10、B【解析】函數(shù)是單調遞增函數(shù),則只需時,函數(shù)在區(qū)間(a,b)上存在零點.【詳解】函數(shù),x>0上單調遞增,,函數(shù)f(x)零點所在的大致區(qū)間是;故選B【點睛】本題考查利用函數(shù)零點存在性定義定理求解函數(shù)的零點的范圍,屬于基礎題;解題的關鍵是首先要判斷函數(shù)的單調性,再根據(jù)零點存在的條件:已知函數(shù)在(a,b)連續(xù),若確定零點所在的區(qū)間.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】作出函數(shù)的圖象,結合圖象即可得的最小值.【詳解】如圖,在同一直角坐標系中分別作出函數(shù)和的圖象,因為對,,故函數(shù)的圖象如圖所示:由圖可知,當時,函數(shù)取得最小值.故答案為:.12、【解析】由已知得,所以,所以答案:點睛:向量數(shù)量積的求法及注意事項:(1)計算數(shù)量積的三種方法:定義、坐標運算、數(shù)量積的幾何意義,要靈活選用,和圖形有關的不要忽略數(shù)量積幾何意義的應用(2)求向量模的常用方法:利用公式,將模的運算轉化為向量的數(shù)量積的運算,解題時要注意向量數(shù)量積運算率的靈活應用(3)利用向量垂直或平行的條件構造方程或函數(shù)是求參數(shù)或最值問題常用的方法與技巧13、①.②.【解析】直接將代入解析式即可求的值,進而可得的解析式,再分段求最小值即可求解.【詳解】因為,所以,所以,當時,對稱軸為,開口向上,此時在單調遞增,,當時,,此時時,最小值,所以最小值為,故答案為:;.14、①.②.【解析】令,求得,即可得到函數(shù)的圖象恒過定點;令,求得函數(shù)的定義域為,利用二次函數(shù)的性質,結合復合函數(shù)的單調性的判定方法,即可求解.【詳解】由題意,函數(shù)(且),令,即,可得,即函數(shù)的圖象恒過定點,令,即,解得,即函數(shù)的定義域為,又由函數(shù)的圖象開口向下,對稱軸的方程為,所以函數(shù)在上單調遞增,在上單調遞減,結合復合函數(shù)的單調性的判定方法,可得函數(shù)的遞增區(qū)間為.故答案為:;.15、【解析】根據(jù)直線一般式,兩直線平行則有,代入即可求解.【詳解】由題意,直線與直線平行,則有故答案為:【點睛】本題考查直線一般式方程下的平行公式,屬于基礎題.16、【解析】利用兩角差的正切公式可計算出的值.【詳解】由兩角差的正切公式得.故答案為:.【點睛】本題考查利用兩角差的正切公式求值,解題的關鍵就是弄清角與角之間的關系,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2),.【解析】(1)根據(jù)一元二次不等式的解法解出集合A,根據(jù)分式不等式解出結合B;(2)由交集、并集的概念和運算即可得出結果.【小問1詳解】由題意知,,且【小問2詳解】由(1)知,,,所以,.18、(1)是奇函數(shù);證明見解析(2)【解析】(1)首先確定定義域,根據(jù)奇偶性定義可得結論;(2)令,可求得的范圍,進而可得的值域.【小問1詳解】由得:,定義域為,關于原點對稱;,,為奇函數(shù);【小問2詳解】令,且,,或,或,的值域為.19、(1)1和(2)答案見解析【解析】(1)分段函數(shù),在每一段上分別求解后檢驗(2)根據(jù)對稱軸與區(qū)間關系,分類討論求解【小問1詳解】當時,當時,由得;當時,由得(舍去)當時,函數(shù)的零點為1和【小問2詳解】①當時,,,由二次函數(shù)的單調性可知在上單調遞減②當即時,,,由二次函數(shù)的單調性可知在上單調遞增③當時,在上遞增,在上的最大值為當時在遞增,在上遞減,在上的最大值為,當時當時在上遞增,在上的最大值為,當時綜上所述:當時,當時,當時,當時,20、(1);(2);(3).【解析】(1)當a=1時,利用對數(shù)函數(shù)的單調性,直接解不等式f(x)1即可;(2)化簡關于x的方程f(x)+2x=0,通過分離變量推出a的表達式,通過解集中恰有兩個元素,利用二次函數(shù)的性質,即可求a的取值范圍;(3)在R上單調遞減利用復合函數(shù)的單調性,求解函數(shù)的最值,∴令,化簡不等式,轉化為求解不等式的最大值,然后求得a的范圍【詳解】(1)當時,,∴,解得,∴原不等式的解集為.(2)方程,即為,∴,∴,令,則,由題意得方程在上只有兩解,令,,結合圖象可得,當時,直線和函數(shù)的圖象只有兩個公共點,即方程只有兩個解∴實數(shù)的范圍.(3)∵函數(shù)在上單調遞減,∴函數(shù)在定義域內單調遞減,∴函數(shù)在區(qū)間上最大值為,最小值為,∴,由題意得,∴恒成立,令,∴對,恒成立,∵在上單調遞增,∴∴,解得,又,∴∴實數(shù)的取值范圍是.【點睛】本題考查函數(shù)的綜合應用,復合函數(shù)的單調性以及指對復合型函數(shù)的最值的求法,利用換元法將指對復合型函數(shù)轉化為二次函數(shù)求最值是關鍵,考查轉化思想以及分類討論思想的應用,屬于難題21、(1),;(2)見解析;(3)【解析】(1)由在R上單減,列出方程組,即可求的值;(2)由函數(shù)y=2x+lgx在(0,+∞)單調遞增可知即,結合對數(shù)函數(shù)的單調性可判斷(3)易知在[﹣2,+∞)上單調遞增.設滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根.結合二次方程的實根分布可求k的范圍【詳解】解:(1)∵在R上單減,所以區(qū)間[a,b]滿足,解得a=﹣1,b=1(2)∵函數(shù)y=2x+lgx在(0,+∞)單調遞增假設存在滿足條件的區(qū)間[a,b],a<b,則,即∴l(xiāng)gx=﹣x在(0,+∞)有兩個不同的實數(shù)根,但是結合對數(shù)函數(shù)的單調性可知,y=lgx與y=﹣x只
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年天津一百中高考語文質檢試卷(一)
- 2023年全斷面掘進機項目融資計劃書
- 2023年三醋酸纖維素膜項目融資計劃書
- 《社會文化》課件
- 電力及電機拖動習題庫+參考答案
- 養(yǎng)老院老人生活設施維修人員考核獎懲制度
- 養(yǎng)老院老人護理評估制度
- 2024年大型企業(yè)第三方社保代繳與員工福利管理服務協(xié)議3篇
- 施工房屋漏水免責協(xié)議書(2篇)
- 2025年駕考駕考貨運道路從業(yè)資格證
- DTU配網自動化測控終端精講
- 道路運輸達標車輛客車貨車核查記錄表
- 兒童詩兒童詩的欣賞和創(chuàng)作(課件)
- 人力資源管理工作思路(共3頁)
- 五筆常用字根表3746
- 新生兒肺氣漏
- 氣管切開(一次性氣切導管)護理評分標準
- 保安工作日志表
- 姜太公釣魚的歷史故事
- 數(shù)控車床實訓圖紙國際象棋圖紙全套
- 電子政務概論教案
評論
0/150
提交評論