遼寧省遼陽縣2023年高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
遼寧省遼陽縣2023年高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
遼寧省遼陽縣2023年高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
遼寧省遼陽縣2023年高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
遼寧省遼陽縣2023年高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

遼寧省遼陽縣2023年高一數(shù)學第一學期期末學業(yè)質量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,若,則()A.1或4 B.1或C.或4 D.或2.已知函數(shù)f(x)=有兩不同的零點,則的取值范圍是()A.(?∞,0) B.(0,+∞)C.(?1,0) D.(0,1)3.函數(shù)的零點所在的區(qū)間為A. B.C. D.4.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積為()A. B.C. D.5.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天6.下列四個幾何體中,每個幾何體的三視圖中有且僅有兩個視圖相同的是A.①② B.②③C.③④ D.②④7.下列函數(shù)既不是奇函數(shù),也不是偶函數(shù),且在上單調遞增是A. B.C. D.8.已知方程的兩根為與,則()A.1 B.2C.4 D.69.已知函數(shù),若存在四個互不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.10.在實數(shù)的原有運算法則中,補充定義新運算“”如下:當時,;當時,,已知函數(shù),則滿足的實數(shù)的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則無論取何值,圖象恒過的定點坐標______;若在上單調遞減,則實數(shù)的取值范圍是______12.為了保護水資源,提倡節(jié)約用水,某城市對居民生活用水實行“階梯水價”.計費方式如下表:每戶每月用水量水價不超過12m的部分3元/m超過12m但不超過18m的部分6元/m超過18m的部分9元/m若某戶居民本月交納水費為66元,則此戶居民本月用水量為____________.13.已知非零向量、滿足,,在方向上的投影為,則_______.14.函數(shù)定義域為____.15.若函數(shù)在區(qū)間上為減函數(shù),則實數(shù)的取值范圍為________16.已知函數(shù),的圖像在區(qū)間上恰有三個最低點,則的取值范圍為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在一個周期內(nèi)的圖像經(jīng)過點和點,且的圖像有一條對稱軸為.(1)求的解析式及最小正周期;(2)求的單調遞增區(qū)間.18.求值:(1);(2).19.如圖,在圓柱中,,分別是上、下底面圓的直徑,且,,分別是圓柱軸截面上的母線.(1)若,圓柱的母線長等于底面圓的直徑,求圓柱的表面積.(2)證明:平面平面.20.已知是同一平面內(nèi)的三個向量,其中(1)若,且,求的坐標;(2)若,且與的夾角為,求的值21.已知函數(shù)(1)若,求不等式的解集;(2)若時,不等式恒成立,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)向量的坐標表示,以及向量垂直的條件列出方程,即可求解.【詳解】由題意,向量,可得,因為,則,解得或.故選:B.2、A【解析】函數(shù)f(x)=有兩不同的零點,可以轉化為直線與函數(shù)的圖象有兩個不同的交點,構造不等式即可求得的取值范圍.【詳解】由題可知方程有兩個不同的實數(shù)根,則直線與函數(shù)的圖象有兩個不同的交點,作出與的大致圖象如下:不妨設,由圖可知,,整理得,由基本不等式得,(當且僅當時等號成立)又,所以,解得,故選:A3、B【解析】函數(shù)的零點所在區(qū)間需滿足的條件是函數(shù)在區(qū)間端點的函數(shù)值符號相反,函數(shù)是連續(xù)函數(shù)【詳解】解:函數(shù)是連續(xù)增函數(shù),,,即,函數(shù)的零點所在區(qū)間是,故選:【點睛】本題考查函數(shù)的零點的判定定理,連續(xù)函數(shù)在某個區(qū)間存在零點的條件是函數(shù)在區(qū)間端點處的函數(shù)值異號,屬于基礎題4、D【解析】借助正方體模型還原幾何體,進而求解表面積即可.【詳解】解:如圖,在邊長為的正方體模型中,將三視圖還原成直觀圖為三棱錐,其中,均為直角三角形,為等邊三角形,,所以該幾何體的表面積為故選:D5、B【解析】根據(jù)題意可得,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結果.【詳解】因為,,,所以,所以,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應用,考查了指數(shù)式化對數(shù)式,屬于基礎題.6、D【解析】圖①的三種視圖均相同;圖②的正視圖與側視圖相同;圖③的三種視圖均不相同;圖④的正視圖與側視圖相同.故選D7、C【解析】是偶函數(shù),是奇函數(shù),和既不是奇函數(shù)也不是偶函數(shù),在上是減函數(shù),是增函數(shù),故選C8、D【解析】由一元二次方程的根與系數(shù)的關系得出兩根的和與積,再湊配求解【詳解】顯然方程有兩個實數(shù)解,由題意,,所以故選:D9、D【解析】令,則,由題意,有兩個不同的解,有兩個不相等的實根,由圖可知,得或,所以和各有兩個解當有兩個解時,則,當有兩個解時,則或,綜上,的取值范圍是,故選D點睛:本題考查函數(shù)性質的應用.本題為嵌套函數(shù)的應用,一般的,我們應用整體思想解決問題,所以令,則,由題意,有兩個不同的解,有兩個不相等的實根,再結合圖象逐步分析,解得答案10、C【解析】當時,;當時,;所以,易知,在單調遞增,在單調遞增,且時,,時,,則在上單調遞增,所以得:,解得,故選C點睛:新定義的題關鍵是讀懂題意,根據(jù)條件,得到,通過單調性分析,得到在上單調遞增,解不等式,要符合定義域和單調性的雙重要求,則,解得答案二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】計算的值,可得出定點坐標;分析可知,對任意的,,利用參變量分離法可求得,分、、三種情況討論,分析函數(shù)在上的單調性,由此可得出實數(shù)的取值范圍.【詳解】因為,故函數(shù)圖象恒過的定點坐標為;由題意可知,對任意的,,則,因為函數(shù)在上單調遞增,且當時,,所以,.當時,在上為減函數(shù),函數(shù)為增函數(shù),所以,函數(shù)、在上均為減函數(shù),此時,函數(shù)在上為減函數(shù),合乎題意;當且時,,不合乎題意;當時,在上為增函數(shù),函數(shù)為增函數(shù),函數(shù)、在上均為增函數(shù),此時,函數(shù)在上為增函數(shù),不合乎題意.綜上所述,若在上單調遞減,.故答案為:;.12、【解析】根據(jù)階梯水價,結合題意進行求解即可.【詳解】解:當用水量為時,水費為,而本月交納的水費為66元,顯然用水量超過,當用水量為時,水費為,而本月交納的水費為66元,所以本月用水量不超過,即有,因此本月用水量為,故答案為:13、【解析】利用向量數(shù)量積的幾何意義得出,在等式兩邊平方可求出的值,然后利用平面向量數(shù)量積的運算律可計算出的值.【詳解】,在方向上的投影為,,,則,可得,因此,.故答案:.【點睛】本題考查平面向量數(shù)量積計算,涉及利用向量的模求數(shù)量積,同時也考查了向量數(shù)量積幾何意義的應用,考查計算能力,屬于基礎題.14、∪【解析】根據(jù)題意列出滿足的條件,解不等式組【詳解】由題意得,即,解得或,從而函數(shù)的定義域為∪.故答案為:∪.15、【解析】分類討論,時根據(jù)二次函數(shù)的性質求解【詳解】時,滿足題意;時,,解得,綜上,故答案為:16、【解析】直接利用正弦型函數(shù)的性質的應用和函數(shù)的單調遞區(qū)間的應用求出結果【詳解】解:,,根據(jù)正弦型函數(shù)圖象的特點知,軸左側有1個或2個最低點①若函數(shù)圖象在軸左側僅有1個最低點,則,解得,,,此時在軸左側至少有2個最低點函數(shù)圖象在軸左側僅有1個最低點不符合題意;②若函數(shù)圖象在軸左側有2個最低點,則,解得,又,則,故,時,在,恰有3個最低點綜上所述,故答案:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)由函數(shù)圖象經(jīng)過點且f(x)的圖象有一條對稱軸為直線,可得最大值A,且能得周期并求得ω,由五點法作圖求出的值,可得函數(shù)的解析式(2)利用正弦函數(shù)的單調性求得f(x)的單調遞增區(qū)間【詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個周期內(nèi)的圖象經(jīng)過點,,且f(x)的圖象有一條對稱軸為直線,故最大值A=4,且,∴,∴ω=3所以.因為的圖象經(jīng)過點,所以,所以,.因為,所以,所以.(2)因為,所以,,所以,,即的單調遞增區(qū)間為.【點睛】本題主要考查由函數(shù)y=Asin(ωx+)的性質求解析式,通常由函數(shù)的最大值求出A,由周期求出ω,由五點法作圖求出的值,考查了正弦型函數(shù)的單調性問題,屬于基礎題18、(1)112(2)3【解析】(1)依據(jù)冪的運算性質即可解決;(2)依據(jù)對數(shù)的運算性質及換底公式即可解決.【小問1詳解】【小問2詳解】19、(1).(2)證明見詳解【解析】(1)借助圓柱的母線垂直于底面構造直角三角形計算可得半徑,然后可得表面積;(2)構造平行四邊形證明,結合已知可證.【小問1詳解】連接CF、DF,因為CD為直徑,記底面半徑為R,EF=2R則又解得R=2圓柱的表面積.【小問2詳解】連接、、、由圓柱性質知且且四邊形為平行四邊形又平面CDE,平面CDE平面CDE同理,平面CDE又,平面ABH,平面ABH平面平面.20、(1)或(2)【解析】(1)由可設,再由可得答案(2)由數(shù)量積的定義可得,代入即可得答案【詳解】解:(1)由可設,∵,∴,∴,∴或(2)∵與的夾角為,∴,∴【點睛】本題考查向量的基本運算,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論