【蘇科版】江蘇省淮安市盱眙縣2024屆中考四模數(shù)學試題含解析_第1頁
【蘇科版】江蘇省淮安市盱眙縣2024屆中考四模數(shù)學試題含解析_第2頁
【蘇科版】江蘇省淮安市盱眙縣2024屆中考四模數(shù)學試題含解析_第3頁
【蘇科版】江蘇省淮安市盱眙縣2024屆中考四模數(shù)學試題含解析_第4頁
【蘇科版】江蘇省淮安市盱眙縣2024屆中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省淮安市盱眙縣2024學年中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某城市幾條道路的位置關(guān)系如圖所示,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠C的度數(shù)為()A.48° B.40° C.30° D.24°2.如圖所示的四邊形,與選項中的一個四邊形相似,這個四邊形是()A. B. C. D.3.若0<m<2,則關(guān)于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情況是()A.無實數(shù)根B.有兩個正根C.有兩個根,且都大于﹣3mD.有兩個根,其中一根大于﹣m4.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(

)A.2cm2

B.3cm2

C.4cm2

D.5cm25.某班要從9名百米跑成績各不相同的同學中選4名參加4×100米接力賽,而這9名同學只知道自己的成績,要想讓他們知道自己是否入選,老師只需公布他們成績的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差6.在以下三個圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖37.如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是()A.10π B.15π C.20π D.30π8.下列運算結(jié)果正確的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(chǎn)(a+b)=a2+bD.6ab2÷2ab=3b9.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應點是點B′,點C的對應點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°10.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>211.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應值,可判斷該二次函數(shù)的圖象與軸().

…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側(cè)C.有兩個交點,且它們均在軸同側(cè) D.無交點12.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:-2x2y+8xy-6y=__________.14.若關(guān)于x的方程x2-mx+m=0有兩個相等實數(shù)根,則代數(shù)式2m2-8m+3的值為__________.15.如圖是一個幾何體的三視圖(圖中尺寸單位:),根據(jù)圖中數(shù)據(jù)計算,這個幾何體的表面積為__________.16.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.17.已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,則a的值是______.18.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,在△OAB中,OA=OB,⊙O經(jīng)過AB的中點C,與OB交于點D,且與BO的延長線交于點E,連接EC,CD.(1)試判斷AB與⊙O的位置關(guān)系,并加以證明;(2)若tanE=,⊙O的半徑為3,求OA的長.20.(6分)如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.

21.(6分)我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?設第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時利潤最大,最大利潤是多少?22.(8分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.23.(8分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.24.(10分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.25.(10分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內(nèi),求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.26.(12分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結(jié)BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.27.(12分)“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民人數(shù)是人;(2)將圖①②補充完整;(直接補填在圖中)(3)求圖②中表示“A”的圓心角的度數(shù);(4)若居民區(qū)有8000人,請估計愛吃D湯圓的人數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故選D.點睛:本題考查了等腰三角形的性質(zhì),平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.2、D【解題分析】

根據(jù)勾股定理求出四邊形第四條邊的長度,進而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【題目詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應角相等,故選D.【題目點撥】本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對應邊的比相等是解題的關(guān)鍵.3、A【解題分析】

先整理為一般形式,用含m的式子表示出根的判別式△,再結(jié)合已知條件判斷△的取值范圍即可.【題目詳解】方程整理為,△,∵,∴,∴△,∴方程沒有實數(shù)根,故選A.【題目點撥】本題考查了一元二次方程根的判別式,當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.4、C【解題分析】

延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【題目詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【題目點撥】本題考查了三角形面積和全等三角形的性質(zhì)和判定的應用,關(guān)鍵是求出S△PBC=S△PBE+S△PCE=12S△5、B【解題分析】

總共有9名同學,只要確定每個人與成績的第五名的成績的多少即可判斷,然后根據(jù)中位數(shù)定義即可判斷.【題目詳解】要想知道自己是否入選,老師只需公布第五名的成績,即中位數(shù).故選B.6、C【解題分析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導得出AD是角平分線.【題目詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【題目點撥】本題考查了尺規(guī)作圖,三角形全等的判定與性質(zhì)等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質(zhì)是解題的關(guān)鍵.7、B【解題分析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長為5,∵圓錐的底面周長等于圓錐的側(cè)面展開扇形的弧長,∴圓錐的底面周長=圓錐的側(cè)面展開扇形的弧長=2πr=2π×3=6π,∴圓錐的側(cè)面積=lr=×6π×5=15π,故選B8、D【解題分析】

各項計算得到結(jié)果,即可作出判斷.【題目詳解】解:A、原式=2a,不符合題意;

B、原式=a2-2ab+b2,不符合題意;

C、原式=a2+ab,不符合題意;D、原式=3b,符合題意;

故選D【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.9、C【解題分析】試題分析:由旋轉(zhuǎn)的性質(zhì)可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點:旋轉(zhuǎn)的性質(zhì).10、A【解題分析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【題目詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【題目點撥】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.11、B【解題分析】

根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【題目詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側(cè)故選B.【題目點撥】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應用題,只需學生熟練掌握拋物線的對稱性,即可完成.12、A【解題分析】

根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應的方程組,本題得以解決.【題目詳解】由題意可得,,故選A.【題目點撥】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應的方程組.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-2y(x-1)(x-3)【解題分析】分析:提取公因式法和十字相乘法相結(jié)合因式分解即可.詳解:原式故答案為點睛:本題主要考查因式分解,熟練掌握提取公因式法和十字相乘法是解題的關(guān)鍵.分解一定要徹底.14、1.【解題分析】

根據(jù)方程的系數(shù)結(jié)合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結(jié)論.【題目詳解】∵關(guān)于x的方程x2﹣mx+m=0有兩個相等實數(shù)根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【題目點撥】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關(guān)鍵.15、【解題分析】分析:由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其表面積.詳解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為2cm,故表面積=πrl+πr2=π×2×6+π×22=16π(cm2).故答案為:16π.點睛:考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.16、14【解題分析】

根據(jù)菱形的性質(zhì),先求另一條對角線的長度,再運用菱形的面積等于對角線乘積的一半求解.【題目詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【題目點撥】此題考查了菱形的性質(zhì)及面積求法,難度不大.17、.【解題分析】試題分析:∵關(guān)于x的一元二次方程有兩個相等的實數(shù)根,∴.考點:一元二次方程根的判別式.18、1.【解題分析】

連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【題目詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,F(xiàn)C=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.【題目點撥】本題結(jié)合三角形全等考查了三角函數(shù)的知識.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)AB與⊙O的位置關(guān)系是相切,證明見解析;(2)OA=1.【解題分析】

(1)先判斷AB與⊙O的位置關(guān)系,然后根據(jù)等腰三角形的性質(zhì)即可解答本題;(2)根據(jù)題三角形的相似可以求得BD的長,從而可以得到OA的長.【題目詳解】解:(1)AB與⊙O的位置關(guān)系是相切,證明:如圖,連接OC.∵OA=OB,C為AB的中點,∴OC⊥AB.∴AB是⊙O的切線;(2)∵ED是直徑,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴.∴BC2=BD?BE.∵,∴.∴.設BD=x,則BC=2x.又BC2=BD?BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【題目點撥】本題考查直線和圓的位置關(guān)系、等腰三角形的性質(zhì)、三角形的相似,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.20、(2)1【解題分析】試題分析:(1)連結(jié)OC,由=,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關(guān)系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三邊的關(guān)系得BC=AC=1,AB=2BC=8,所以⊙O的半徑為1.試題解析:(1)證明:連結(jié)OC,如圖,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切線(2)解:連結(jié)BC,如圖∵AB為直徑∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半徑為1.考點:圓周角定理,切線的判定定理,30°的直角三角形三邊的關(guān)系21、(1)工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件;(2)第11天時,利潤最大,最大利潤是845元.【解題分析】分析:(1)根據(jù)y=70求得x即可;(2)先根據(jù)函數(shù)圖象求得P關(guān)于x的函數(shù)解析式,再結(jié)合x的范圍分類討論,根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)求得最值即可.本題解析:解:(1)若7.5x=70,得x=>4,不符合題意;則5x+10=70,解得x=12.答:工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件.(2)由函數(shù)圖象知,當0≤x≤4時,P=40,當4<x≤14時,設P=kx+b,將(4,40)、(14,50)代入,得解得∴P=x+36.①當0≤x≤4時,W=(60-40)·7.5x=150x,∵W隨x的增大而增大,∴當x=4時,W最大=600;②當4<x≤14時,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴當x=11時,W最大=845.∵845>600,∴當x=11時,W取得最大值845元.答:第11天時,利潤最大,最大利潤是845元.點睛:本題考查了一次函數(shù)的應用、二次函數(shù)的應用,解題的關(guān)鍵是理解題意,記住利潤=出廠價-成本,學會利用函數(shù)的性質(zhì)解決最值問題.22、(1)見解析(2)【解題分析】

(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=∠DBE,所以OE∥BC,從可證明BC⊥AC;(2)設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【題目詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【題目點撥】本題考查圓的綜合問題,涉及平行線的判定與性質(zhì),銳角三角函數(shù),解方程等知識,綜合程度較高,需要學生靈活運用所學知識.23、(1)反比例函數(shù)的解析式為y=﹣;一次函數(shù)的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解題分析】

(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數(shù)的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函數(shù)的解析式為y=﹣x+2;(2)∵y=﹣x+2,令y=0,則x=4,∴C(4,0),即OC=4,∴△AOB的面積=×4×(3+1)=8;(3)∵反比例函數(shù)y=﹣的圖象位于二、四象限,∴在每個象限內(nèi),y隨x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴點M、N在第二象限,或點M、N在第四象限.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,求三角形的面積,求函數(shù)的解析式,正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.24、(1)見解析;(2)2π.【解題分析】

證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【題目點撥】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了弧長公式.25、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解題分析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯(lián)立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的頂點坐標為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G,由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點坐標為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點坐標為(2﹣t,1),設直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當點E在直線AC上時,﹣2(2﹣t)+1=1,解得:t=.當點E在直線AD上時,(2﹣t)+2=1,解得:t=5,∴當點E在△DAC內(nèi)時,<t<5;(III)如圖,直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G.由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論