![【首發(fā)】內(nèi)蒙古通遼市開魯2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view11/M00/1C/34/wKhkGWWAgTaAIUb-AAIufPqIyE8432.jpg)
![【首發(fā)】內(nèi)蒙古通遼市開魯2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view11/M00/1C/34/wKhkGWWAgTaAIUb-AAIufPqIyE84322.jpg)
![【首發(fā)】內(nèi)蒙古通遼市開魯2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view11/M00/1C/34/wKhkGWWAgTaAIUb-AAIufPqIyE84323.jpg)
![【首發(fā)】內(nèi)蒙古通遼市開魯2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view11/M00/1C/34/wKhkGWWAgTaAIUb-AAIufPqIyE84324.jpg)
![【首發(fā)】內(nèi)蒙古通遼市開魯2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view11/M00/1C/34/wKhkGWWAgTaAIUb-AAIufPqIyE84325.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古通遼市開魯2024年中考考前最后一卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當(dāng)k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱2.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°3.“a是實數(shù),|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件4.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.15.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°6.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.7.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n8.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.9.如圖,在⊙O中,直徑CD⊥弦AB,則下列結(jié)論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D10.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.12.若一個多邊形每個內(nèi)角為140°,則這個多邊形的邊數(shù)是________.13.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當(dāng)CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤14.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.15.如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為____.16.株洲市城區(qū)參加2018年初中畢業(yè)會考的人數(shù)約為10600人,則數(shù)10600用科學(xué)記數(shù)法表示為_____.17.將ΔABC繞點B逆時針旋轉(zhuǎn)到ΔA'BC'使A、B、C'在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為________cm三、解答題(共7小題,滿分69分)18.(10分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長.19.(5分)計算:解方程:20.(8分)我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)21.(10分)為了獎勵優(yōu)秀班集體,學(xué)校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價各是多少元?若學(xué)校購買5副乒乓球拍和3副羽毛球拍,一共應(yīng)支出多少元?22.(10分)在國家的宏觀調(diào)控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續(xù)回落,按此降價的百分率,你預(yù)測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由23.(12分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標(biāo)系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設(shè)運動時間為ts,解答下列問題:(發(fā)現(xiàn))(1)的長度為多少;(2)當(dāng)t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當(dāng)⊙P和△ABO的邊所在的直線相切時,求點P的坐標(biāo).(拓展)當(dāng)與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.24.(14分)某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準(zhǔn)備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】分析:根據(jù)反比例函數(shù)的性質(zhì)一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當(dāng)k>0時,y隨x的增大而減小,錯誤,應(yīng)該是當(dāng)k>0時,在每個象限,y隨x的增大而減??;故本選項不符合題意;C.錯誤,應(yīng)該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì),靈活運用所學(xué)知識解決問題,屬于中考常考題型.2、B【解題分析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關(guān)鍵是先根據(jù)平行線的性質(zhì)求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.3、A【解題分析】根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,由a是實數(shù),得|a|≥0恒成立,因此,這一事件是必然事件.故選A.4、C【解題分析】
∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.5、D【解題分析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【題目點撥】本題主要考查了平行線的性質(zhì)以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內(nèi)角互補.解決問題的關(guān)鍵是作平行線.6、A【解題分析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【題目詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【題目點撥】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.7、D【解題分析】
根據(jù)反比例函數(shù)的性質(zhì),可得答案.【題目詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【題目點撥】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關(guān)鍵.8、B【解題分析】
由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【題目詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【題目點撥】本題主要考查了幾何題的三視圖,解題關(guān)鍵是能正確畫出幾何體的三視圖.9、B【解題分析】
先利用垂徑定理得到弧AD=弧BD,然后根據(jù)圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【題目詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【題目點撥】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。畧A周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、D【解題分析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】
在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質(zhì)利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【題目詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【題目點撥】本題考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考常考題型.12、九【解題分析】
根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)進行求解即可.【題目詳解】由題意可得:180°(n?2)=140°n,解得n=9,故多邊形是九邊形.故答案為9.【題目點撥】本題考查了多邊形的內(nèi)角和定理,解題的關(guān)鍵是熟練的掌握多邊形的內(nèi)角和定理.13、②③.【解題分析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當(dāng)∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當(dāng)∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當(dāng)△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結(jié)論為:②③.考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).14、2或14【解題分析】
分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【題目詳解】①當(dāng)弦AB和CD在圓心同側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當(dāng)弦AB和CD在圓心異側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.15、8【解題分析】試題解析:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9-6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=4可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周長等于16,又∵?ABCD,∴△CEF∽△BEA,相似比為1:2,∴△CEF的周長為816、1.06×104【解題分析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】解:10600=1.06×104,故答案為:1.06×104【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.17、4π【解題分析】分析:易得整理后陰影部分面積為圓心角為110°,兩個半徑分別為4和1的圓環(huán)的面積.詳解:由旋轉(zhuǎn)可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴陰影部分面積=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案為4π.點睛:本題利用旋轉(zhuǎn)前后的圖形全等,直角三角形的性質(zhì),扇形的面積公式求解.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)6.【解題分析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,從而即可證明;
(2)根據(jù)相似三角形對應(yīng)邊成比例即可求出PC=PD=3,再由勾股定理即可求解.【題目詳解】證明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,∴△PAC∽△BPD;
(2)∵ACPD=PCBD,PC=PD,AC=3,BD=1
∴PC=PD=【題目點撥】本題考查了相似三角形的判定與性質(zhì)及等腰直角三角形,屬于基礎(chǔ)題,關(guān)鍵是掌握相似三角形的判定方法.19、(1)10;(2)原方程無解.【解題分析】
(1)原式利用二次根式性質(zhì),零指數(shù)冪、負整數(shù)指數(shù)冪法則,以及特殊角的三角函數(shù)值計算即可求出值;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【題目詳解】(1)原式==10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,經(jīng)檢驗:x=2是增根,原方程無解.【題目點撥】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.20、隧道最短為1093米.【解題分析】【分析】作BD⊥AC于D,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.【題目詳解】如圖,作BD⊥AC于D,由題意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米),在Rt△BCD中,∵tan45°=,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短為1093米.【題目點撥】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)建直角三角形是解題的關(guān)鍵.21、(1)一副乒乓球拍28元,一副羽毛球拍60元(2)共320元.【解題分析】整體分析:(1)設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,根據(jù)“購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元”列方程組求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的單價求解.解:(1)設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,由題意得,,解得:答:購買一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:購買5副乒乓球拍和3副羽毛球拍共320元.22、(1)10%;(1)會跌破10000元/m1.【解題分析】
(1)設(shè)11、11兩月平均每月降價的百分率是x,那么4月份的房價為14000(1-x),11月份的房價為14000(1-x)1,然后根據(jù)11月份的11340元/m1即可列出方程解決問題;(1)根據(jù)(1)的結(jié)果可以計算出今年1月份商品房成交均價,然后和10000元/m1進行比較即可作出判斷.【題目詳解】(1)設(shè)11、11兩月平均每月降價的百分率是x,則11月份的成交價是:14000(1-x),11月份的成交價是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合題意,舍去)答:11、11兩月平均每月降價的百分率是10%;(1)會跌破10000元/m1.如果按此降價的百分率繼續(xù)回落,估計今年1月份該市的商品房成交均價為:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份該市的商品房成交均價會跌破10000元/m1.【題目點撥】此題考查了一元二次方程的應(yīng)用,和實際生活結(jié)合比較緊密,正確理解題意,找到關(guān)鍵的數(shù)量關(guān)系,然后列出方程是解題的關(guān)鍵.23、【發(fā)現(xiàn)】(3)的長度為;(2)重疊部分的面積為;【探究】:點P的坐標(biāo)為;或或;【拓展】t的取值范圍是或,理由見解析.【解題分析】
發(fā)現(xiàn):(3)先確定出扇形半徑,進而用弧長公式即可得出結(jié)論;(2)先求出PA=3,進而求出PQ,即可用面積公式得出結(jié)論;探究:分圓和直線AB和直線OB相切,利用三角函數(shù)即可得出結(jié)論;拓展:先找出和直角三角形的兩邊有兩個交點時的分界點,即可得出結(jié)論.【題目詳解】[發(fā)現(xiàn)](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的長度為.故答案為;(2)設(shè)⊙P半徑為r,則有r=2﹣3=3,當(dāng)t=2時,如圖3,點N與點A重合,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)案評審委托協(xié)議
- 借款反擔(dān)保協(xié)議
- 公司項目經(jīng)理勞務(wù)合同
- 代為持有房地產(chǎn)合同
- 工業(yè)園區(qū)物業(yè)服務(wù)協(xié)議書范本
- 供熱管道安裝勞務(wù)分包合同范本
- 弱電工程項目安裝協(xié)議書范本
- 賽車場裝修合同終止協(xié)議書
- 一線城市經(jīng)濟適用房出租合同范本
- 服裝攤位租賃合同范本
- 自我保護-保護自己勇敢說不
- 安全設(shè)施檢查維護保養(yǎng)記錄表
- 部編版道德與法治四年級下冊第一單元課時備課
- 2024年全國統(tǒng)一高考數(shù)學(xué)試卷(新高考Ⅰ)含答案
- 安裝承包免責(zé)協(xié)議書模板
- 《智能風(fēng)控實踐指南:從模型、特征到?jīng)Q策》記錄
- 新疆建設(shè)項目交通影響評價技術(shù)標(biāo)準(zhǔn)
- 2024年成都市中考數(shù)學(xué)試卷(含詳細解析)
- 2023-2024學(xué)年浙江省溫州市七年級(上)期末英語試卷
- GMP附錄《無菌藥品》試卷測試題庫含答案
- JBT 7387-2014 工業(yè)過程控制系統(tǒng)用電動控制閥
評論
0/150
提交評論