排列組合問題經(jīng)典典型_第1頁
排列組合問題經(jīng)典典型_第2頁
排列組合問題經(jīng)典典型_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第2頁共3頁排列組合問題經(jīng)典題型與通用方法1.相鄰問題捆綁法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當(dāng)作一個大元素參與排列.例1.五人并排站成一排,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種2.相離問題插空排:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的空位和兩端.例2.七人并排站成一行,如果甲乙兩個必須不相鄰,那么不同的排法種數(shù)是()A、1440種B、3600種C、4820種D、4800種3.定序問題縮倍法:在排列問題中限制某幾個元素必須保持一定的順序,可用縮小倍數(shù)的方法.例3.A,B,C,D,E五人并排站成一排,如果必須站在的右邊(可以不相鄰)那么不同的排法有()A、24種B、60種C、90種D、120種4.標(biāo)號排位問題分步法:把元素排到指定位置上,可先把某個元素按規(guī)定排入,第二步再排另一個元素,如此繼續(xù)下去,依次即可完成.例4.將數(shù)字1,2,3,4填入標(biāo)號為1,2,3,4的四個方格里,每格填一個數(shù),則每個方格的標(biāo)號與所填數(shù)字均不相同的填法有()A、6種B、9種C、11種D、23種5.有序分配問題逐分法:有序分配問題指把元素分成若干組,可用逐步下量分組法.例5.(1)有甲乙丙三項任務(wù),甲需2人承擔(dān),乙丙各需一人承擔(dān),從10人中選出4人承擔(dān)這三項任務(wù),不同的選法種數(shù)是()A、1260種B、2025種C、2520種D、5040種(2)12名同學(xué)分別到三個不同的路口進(jìn)行流量的調(diào)查,若每個路口4人,則不同的分配方案有()A、種B、種C、種D、種6.全員分配問題分組法:例6.(1)4名優(yōu)秀學(xué)生全部保送到3所學(xué)校去,每所學(xué)校至少去一名,則不同的保送方案有多少種?(2)5本不同的書,全部分給4個學(xué)生,每個學(xué)生至少一本,不同的分法種數(shù)為()A、480種B、240種C、120種D、96種7.名額分配問題隔板法:例7:10個三好學(xué)生名額分到7個班級,每個班級至少一個名額,有多少種不同分配方案?8.限制條件的分配問題分類法:例8.某高校從某系的10名優(yōu)秀畢業(yè)生中選4人分別到西部四城市參加中國西部經(jīng)濟開發(fā)建設(shè),其中甲同學(xué)不到銀川,乙不到西寧,共有多少種不同派遣方案?11.定位問題優(yōu)先法:某個或幾個元素要排在指定位置,可先排這個或幾個元素;再排其它的元素。例11.現(xiàn)1名老師和4名獲獎同學(xué)排成一排照相留念,若老師不站兩端則有不同的排法有多少種?12.多排問題單排法:把元素排成幾排的問題可歸結(jié)為一排考慮,再分段處理。例12.(1)6個不同的元素排成前后兩排,每排3個元素,那么不同的排法種數(shù)是()A、36種B、120種C、720種D、1440種(2)8個不同的元素排成前后兩排,每排4個元素,其中某2個元素要排在前排,某1個元素排在后排,有多少種不同排法?13.“至少”“至多”問題用間接排除法或分類法:例13.從4臺甲型和5臺乙型電視機中任取3臺,其中至少要甲型和乙型電視機各一臺,則不同的取法共有()A、140種B、80種C、70種D、35種14.選排問題先取后排:從幾類元素中取出符合題意的幾個元素,再安排到一定的位置上,可用先取后排法.例14.(1)四個不同球放入編號為1,2,3,4的四個盒中,則恰有一個空盒的放法有多少種?(2)9名乒乓球運動員,其中男5名,女4名,現(xiàn)在要進(jìn)行混合雙打訓(xùn)練,有多少種不同的分組方法?15.部分合條件問題排除法:在選取的總數(shù)中,只有一部分合條件,可以從總數(shù)中減去不符合條件數(shù),即為所求.例15.(1)以正方體的頂點為頂點的四面體共有()A、70種B、64種C、58種D、52種(2)四面體的頂點和各棱中點共10點,在其中取4個不共面的點,不同的取法共有()A、150種B、147種C、144種D、141種17.可重復(fù)的排列求冪法:允許重復(fù)排列問題的特點是以元素為研究對象,元素不受位置的約束,可逐一安排元素的位置,一般地個不同元素排在個不同位置的排列數(shù)有種方法.例17.把6名實習(xí)生分配到7個車間實習(xí)共有多少種不同方法?排列組合問題經(jīng)典題型答案1.解析:把視為一人,且固定在的右邊,則本題相當(dāng)于4人的全排列,種,答案:.2.解析:除甲乙外,其余5個排列數(shù)為種,再用甲乙去插6個空位有種,不同的排法種數(shù)是種,選.3.解析:在的右邊與在的左邊排法數(shù)相同,所以題設(shè)的排法只是5個元素全排列數(shù)的一半,即種,選.4.解析:先把1填入方格中,符合條件的有3種方法,第二步把被填入方格的對應(yīng)數(shù)字填入其它三個方格,又有三種方法;第三步填余下的兩個數(shù)字,只有一種填法,共有3×3×1=9種填法,選.5.解析:先從10人中選出2人承擔(dān)甲項任務(wù),再從剩下的8人中選1人承擔(dān)乙項任務(wù),第三步從另外的7人中選1人承擔(dān)丙項任務(wù),不同的選法共有種,選.(2)答案:.6.答案:.7.解析:10個名額分到7個班級,就是把10個名額看成10個相同的小球分成7堆,每堆至少一個,可以在10個小球的9個空位中插入6塊木板,每一種插法對應(yīng)著一種分配方案,故共有不同的分配方案為種.8.解析:因為甲乙有限制條件,所以按照是否含有甲乙來分類,有以下四種情況:①若甲乙都不參加,則有派遣方案種;②若甲參加而乙不參加,先安排甲有3種方法,然后安排其余學(xué)生有方法,所以共有;③若乙參加而甲不參加同理也有種;④若甲乙都參加,則先安排甲乙,有7種方法,然后再安排其余8人到另外兩個城市有種,共有方法.所以共有不同的派遣方法總數(shù)為種.11.解析:老師在中間三個位置上選一個有種,4名同學(xué)在其余4個位置上有種方法;所以共有種。.12.解析:前后兩排可看成一排的兩段,因此本題可看成6個不同的元素排成一排,共種,選.(2)解析:看成一排,某2個元素在前半段四個位置中選排2個,有種,某1個元素排在后半段的四個位置中選一個有種,其余5個元素任排5個位置上有種,故共有種排法.13.解析1:逆向思考,至少各一臺的反面就是分別只取一種型號,不取另一種型號的電視機,故不同的取法共有種,選.解析2:至少要甲型和乙型電視機各一臺可分兩種情況:甲型1臺乙型2臺;甲型2臺乙型1臺;故不同的取法有臺,選.14.解析:先取四個球中二個為一組,另二組各一個球的方法有種,再排:在四個盒中每次排3個有種,故共有種.解析:先取男女運動員各2名,有種,這四名運動員混和雙打練習(xí)有中排法,故共有種.15.解析:正方體8個頂點從中每次取四點,理論上可構(gòu)成四面體,但6個表面和6個對角面的四個頂點共面都不能構(gòu)成四面體,所以四面體實際共有個.(2)解析:10個點中任取4個點共有種,其中四點共面的有三種情況:①在四面體的四個面上,每面內(nèi)四點共

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論