




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中英文對照外文翻譯文獻(文檔含英文原文和中文翻譯)AUTOMATICFIXTURESYNTHESISIN3DKamenPenevProgrammableAutomationLaboratoryComputerScienceDepartmentandInstituteforRoboticsandIntelligentSystemsUniversityofSouthernCaliforniaLosAngeles,CA90089-0781 AristidesA.G.RequichaProgrammableAutomationLaboratoryComputerScienceDepartmentandInstituteforRoboticsandIntelligentSystemsUniversityofSouthernCaliforniaLosAngeles,CA90089-0781AbstractAfixtureisanarrangementoffixturingmodulesthatlocateandholdaworkpartduringamanufacturingoperation.Inthisworkwe.considerfixtureswithfrictionlesspointcontactsandpresentamethodforplacementofcontactpointsonanon-prismatic3Dworkpart.Itisanon-deterministic,potentialfieldalgorithmforcontactpointplacement.Themethodprovidesabasicframeworkfortheintegrationofheterogeneoushigh-levelfixturingagentsthroughaninterfacebasedonzonesofattractionandrepulsionontheworkpartboundary.Thealgorithmmayproduceredundantfixtures,andcanaugmentpartialsolutionstocompleteformclosurefixtures.1.IntroductionAfixtureisanarrangementoffixturingmodulesthatlocateandholdaworkpartduringamanufacturingoperation,suchasmachining,assemblyandinspection.Fixturingisofessentialimportancetoindustrialmanufacturingandconstitutesasignificantpartofallmanufacturingcosts.Therefore,fixturedesignautomationisveryimportant.Fixturedesigninvolvesagreatvarietyofconsiderations,suchasrestraint,deterministiclocation,loadability,andtoolaccessibility.Efficientalgorithmsthataddressthewholerangeoffixturingissuesforacomprehensivedomainofworkpartsdonotyetexist.Recently,BrostandPeterspublishedanalgorithm[Brost&Peters1996]thatextendstheearlierclassicworkofBrostandGoldberg[Brost&Goldberg,1994]tothe3Ddomain.Thisalgorithm,however,requiresverticalandhorizontalplanarsurfacestoconstituteasubstantialpartoftheworkpartboundary.Itgeneratesallpossiblefixturesandthenratesthemaccordinglytocertainmetrics.Thisiscomputationallyexpensive.Wagneretalpresentedanalgorithmthatusessevenmodularstrutsmountedinaboxtofixturepolyhedra[Wagneretal1995].Thisalgorithmisnotcompleteinthesensethatitcannoteffectivelyhandlecertaincases,suchasacubewithfacesparalleltothebox.Italsosuffersfromhighcomputationalcomplexity.WallackandCannysuggestedanothermethodwithan“enumerate-and-rate”flavor[Wallack&Canny1996].Itcanfixtureprismaticworkpartswithplanarandcylindricalverticalsurfaces.Ponceproposedanalgorithmthatutilizescurvatureeffectstocomputefixtureswithfourfingersforpolyhedralparts[Ponce96].Thereducednumberofcontactsshouldprovideforbettercomplexityofthisalgorithm,butthequalityoftheproducedfixturesseemstobeinferiortotheonesthatutilizemorecontactsandprovideclassicalformclosure.Inthispaperwepresentanewpotential-fieldalgorithmthatefficientlyproducesqualityfixturedesigns.Ouralgorithmworksforarbitraryworkpartsandprovidesconvenientuniversalmeansforrepresentingvariousfixturingrequirements.Thisalgorithmisadirectgeneralizationofthe2DpotentialfieldfixturingalgorithmofPenevandRequicha[Penev&Requicha1996].Weconsiderfixtureswithfrictionlesspointcontacts.Ithasbeenproventhatsevencontactsarenecessary.[Somoff,1900]andsufficient[Markenscoffetal,1990]toimmobilizeanyworkpartin3DFollowingaleast-commitmentstrategy,theprocessoffixturesynthesismaybeseparatedintothreestages–fixturingtaskanalysis,contactpointplacement,andfixturelayoutdesign.Inthefixturingtaskanalysisphasetheworkpartgeometryandmanufacturingprocessareanalyzedtoidentifyvariousparametersofthefixturingproblem,suchascuttingforces,inaccessibleorforbiddenareas,andalsotofindfeaturesthatmaybeusefulforapplyingfixturingdevices,suchasmachinedflatsurfaces,horizontalandverticalsurfaces,pairsofparallelsurfaces,pairsofperpendicularsurfaces,etc.FigureSEQFigure\*ARABIC1:ContactpointplacementInthecontactpointplacementphaseanumberofcontactpointsareplacedontheworkpartboundary(REF_Ref346884946Figure1),sothattheresultingconfigurationofcontactssatisfiestheconstraintsidentifiedintheanalysisphaseaswellascertainkinematicrequirementsthatmustbesatisfiedbyanyfixture,suchastotalrestraint.FigureSEQFigure\*ARABIC2:FromcontactpointconfigurationtofixturelayoutdesignInthelayoutdesignphase“towers”offixturingcomponentsarebuiltandplacedaroundtheworkpartsoastocontactthepartatthepointlocationscomputedinthecontactpointplacementphase.Forexample,acontactpointonahorizontalworkpartsurface(REF_Ref346884976Figure2a)mayleadtotheinstantiationofanoverheadclampthatcontactstheworkpartatthatparticularpoint(REF_Ref346884976Figure2b).Thisisadesign-for-functionproblemconstrainedbythesetofavailablefixturingmodulesandtheirparameters.Thesetofcontactpointsarethefunctionalspecificationandthefixturelayoutisaconfigurationofcomponentsthatachievesit.Inthisresearchwefocusoncontactpointplacementanditsintegrationwithpartandtaskanalysis.Anarrangementofcontactpointsmustsatisfycertainkinematicconditionsinordertobeabasisforagoodfixture.Inparticular,itmustprovideformclosure,deterministiclocation,clampingstability,detachabilityandloadability[Asada&By].Thealgorithmusesadiscretizationoftheworkpartboundary,similartothemeshesusedinFEA.However,unlikeFEA,ourattentionisonthemeshnodes,ratherthanonthemeshelements.Discretizationwaschosenforthefollowingreasons:First,wecanhandleworkpartswitharbitrarygeometry,aslongasthepart’sboundaryisacollectionofsmoothsurfaceswhichweknowhowtomesh.ThisrequirementissatisfiedbyallsurfacesusedinmodernCADsystems.Second,discretizationisnecessaryinordertoavoidanexpensivecomputationofgeodesiccurves.Third,discretizationshouldnotsignificantlyaffecttheresults,aslongasthenumberofdiscretecandidatelocationsontheboundaryismuchlargerthanthenumberofsurfaces.Inourimplementationthediscretizedboundaryconsistsofseveralhundredpointsonly.Experimentalevidenceindicatesthatthisissufficientforrealisticworkparts.Weintroduceapotentialfieldontheworkpartboundarydefinedbyzonesofattractionandrepulsion,whichwecallP-zones.Thecontactsaremodeledaschargedparticlesthatmoveontheboundarydrivenbythispotentialfield.Thecontactsarealsosubjecttomutualrepulsionbasedonthedistancebetweeneachtwocontactsinthewrenchvectorspace.Thealgorithmexecutesaseriesofsimulationepochs.Eachepochstartswitharandomconfiguration,proceedsthroughacertainnumberofstepstowardlowerpotentialenergyandendswithatestforkinematicconditions(formclosure).Thealgorithmterminateswhenanepochproducessatisfactoryconfiguration.Tospreadthecontactpointsontheboundarywesimulaterepulsionbetweeneachpairofthem.Theintensityofrepulsionbetweentwocontactpointsdependsonthedistancebetweentheircorrespondingwrenchesinthewrenchvectorspace.Oursimulationproceedsinalimitednumberofstepsoruntilequilibriumisreached.Theresultingplacementshouldhaveagoodchanceofleadingtoagoodfixture.Sucharandomizedmethodassumesthatthesetofn-tuplesofcontactpoints(forngreaterthanthree)thatsatisfythekinematicrequirementshasmeasuregreaterthanzeroandisrelativelylarge.Thatis,thesolutionspaceislarge.Althoughwehavenotbeenabletoprovethishypothesismathematically,ourexperimentshaveconfirmedit.Moreover,themeasureincreaseswiththenumberofcontactpoints,e.g.itiseasiertofindaformclosurearrangementwitheightpointsthanwithseven.Thenotionofrepulsionisessentialinourmethodasitallowsotherconsiderationstobeaccommodatedeasily.Wecanputadditionalrepulsionspotsontheworkpartboundarytorepresentforbiddenregions.Wecanalsointroducecentersofattraction.Thesecorrespondtoareasthatwererecommendedbytheanalysisphaseasdesirableforplacingcontactpoints,e.g.datumsurfaces.Thus,weproposeapotentialfieldforuniformlyrepresentingheterogeneousfixturinginformation.Regionsofrepulsioncorrespondtoareaswithpositivepotential.Negativepotentialisassociatedwithattraction.Zeropotentialcorrespondstoneutralareas.Theinitialrandomlyselectedcontactpointsareregardedasparticlesthatarebeingattractedorrepelledbyapotentialfieldthatincludesapairwiserepulsion.Thegoalofthesystemofcontactpointsistominimizeitstotalpotentialenergy.2TheInputTheinputtoouralgorithmconsistsofCADmodelsoftheworkpartboundaryandasetofsolidP-zones.EachP-zonedefinesapotential-fieldinfluencingregionwithnon-zerocharge.3DiscretizingtheWorkpartBoundaryThefirststepinourmethodistodiscretizetheboundaryoftheworkpart,thuscreatingthecandidatecontactpointlocationswhichwecallnodes.Discretizationisdonebyinvokingastandardfaceterembeddedinthegeometricmodelerweuse.Thediscretizationisstoredinanorientedgraphdatastructure.Eachnodeofthegraphcorrespondstoanodeonthemesh.Theedgesofthegraphcorrespondtoedgesofthemeshconnectingneighboringnodes.Ateachnodethescrewrepresentingthepointcontactiscomputedandstored.Ascrewisaconciseandconvenientrepresentationofthesurfacenormalandthelocationofthenode.Itisusedinallkinematictestsbasedonscrewtheory.4ComputingthePotentialFieldThecontactpointsinouralgorithmaresubjecttothecombinedactionoftwocomponentsformingthepotentialfield.Thebackgroundpotentialfieldisoneofthesecomponents.ItisgeneratedbytheP-zonesanddoesnotdependonthelocationofthecontactpoints.Thebackgroundpotentialfieldiscomputedonlyonce,inthebeginningofthealgorithm.Theothercomponentisdynamicandisduetotherepulsionbetweenthecontacts.Thedynamiccomponentiscomputedateachepoch.Thecomputationofthebackgroundpotentialfieldproceedsasfollows:First,wefindallnodesthatlieinsideP-zones.WeperformmembershipclassificationofeachnodeagainsteachP-zone[Tilove1980].IfthenodeisinsideacertainP-zone,thechargeoftheP-zonecontributestothenode’scharge.Thecontributionmaybepositiveornegative,dependingonthesignofthezone’scharge.AfterthisprocedurethenodesthatclassifyoutsideallP-zonesremainwithzerocharge.IfanodemclassifiesinsideP-zonesz1,z2...zkitschargeCmequalsthesumofthechargesofthoseP-zones:AfterthechargeofthenodesinsideP-zonesisevaluatedweproceedbycomputingthepotentialofallnodes.WedefinethepotentialatachargednodetobeinitiallyequaltoitschargePm=Cm.ForeachchargednodemwithchargeCmweperformabreadth-firsttraversalofitsneighborsupdatingtheirpotentialaccordingtotheformula:Hered(m,n)isthedistancebetweennodesm(thechargednode)andn,andd0isaconstantcalleddistanceofinfluence.Thedistancebetweentwonodesisdefinedasthenumberofedgesontheshortestpathbetweenthemonthemeshboundaryapproximation(REF_Ref347639717Figure3).FigureSEQFigure\*ARABIC3:DistancebetweentwonodesonthemeshAssumingthemeshsatisfiescertaincommonqualityrequirements,thisdistanceapproximatesquitewelltheactualgeodesicdistancebetweentwopointsontheobject’sboundary.Thebreadth-firsttraversalgoesonlyd0nodesdeep.Thusachargednodecausesupdatesofthepotentialonlyinitsd0-neighborhood.Forexample,ifthethreedarknodesinREF_Ref347639655Figure4havecharge100andd0=3thepotentialinthispartofthemeshwillbeasshownbythenumbersnexttoeachnode.FigureSEQFigure\*ARABIC4:PotentialfieldgeneratedbythreechargednodesThedynamicpotentialrepresentsrepulsionbetweenthecontactpoints.Therepulsionbetweentwocontactsdependsonhowdistanttheircorrespondingscrewsareas6-dimensionalvectors:Hereisasmallnumbertoavoiddivisionbyzero,isascalingfactorthatmakesthedynamicpotentialcompatiblewiththebackgroundcomponent,and(m,n)istheEuclideandistancebetweenthescrewsatnodesmandn.Therationalebehindrepulsionbasedonscrew-distanceisthefollowing:AnecessaryandsufficientconditionforformclosureisthatthesetofcontactscrewspositivelyspanstheentireR6[Wagneretal.1995].Asthecontactscrewsrepeleachother,theywilltendtodistributeregularlyinthespace,thusincreasingthepossibilityofformclosure.5EpochsEachepochstartswitharandominitialplacementofcontactpoints.Thenthesecontactpointsaresubjectedtothecombinedforcesduetothebackgroundpotentialfieldandtherepulsionbetweenthecontactpointsthemselves.Thealgorithmproceedsinaniterativefashion.First,thedynamiccomponentoftheaggregatedpotentialfieldiscomputedaccordinglyto(3).Thedynamicpotentialiscomputedonlyatthecontactsandtheirimmediateneighbors.Afterthecombinedpotentialiscomputed,eachcontactismovedtotheneighbornodewiththelowestpotential.Thusastepiscompleted.Ifthenumberofstepshasreachedacertainlimit,ornocontactwasmoved(i.e.equilibriumhasbeenreached),theepochiscompleted.Throughoutthisprocessspecialattentionispaidtonodesthatlieonedgesandverticesoftheworkpart.Thesenodesdonothaveascrewassociatedwiththemasthereisnonormaldefinedthere.Therefore,theycannotbeapossiblecontactlocation.Instead,theyservemerelyastransitnodesinthesimulation.Thisisachievedbyalwaysconsideringtheneighborsofsuchanodewheneverthenodeitselfisaddressed.Thenetresultofanepochisthattheinitiallyrandomconfigurationtransformsintoonethathasmoreregulardistributionofcontactscrewsinthescrewvectorspace,whileatthesametimekeepingawayfromrepulsionzonesandprovidingcontactsinsideattractionzones.6TestInthetestphasewecheckwhethertheplacementofcontactpointsprovidesformclosure.ThisisdoneusingthemethodofChouetal.[Chouetal.19??]Ittestswhetherthereexistsanon-zeromotionscrewthatcomplieswiththeconstraintsimposedbythecontactwrenches:Theexistenceofsistestedusinglinearprogrammingtechniques.Ifnosuchmotionexiststhearrangementofcontactsprovidesformclosure.Ifthetestsucceedsthealgorithmterminates.Otherwiseanewepochisinitiated.IfthetestfailsandacertainnumberofgenerationshavebeentriedweincreasethenumberofcontactpointsC.IncreasingCimprovestheprobabilityofendingupwithaformclosureconfigurationaswellashavingmorecontactsinP-zonesofattraction.Thealgorithmensuresthatnotwocontactpointsareplacedonthesamemeshnode.Therefore,intheextremecasetherearethreecontactsoneachface.Suchaplacementobviouslyimmobilizesanypolyhedralpart.Hencethecompletenessofthealgorithm(atleastforpolyhedralparts).Afteraredundantform-closureconfigurationiscomputed,thealgorithmcanremovetheextracontactsintheorderofdecreasingbackgroundpotential,i.e.startingwiththeonesinP-zonesofhighestrepulsion.Redundantfixturesaresometimespreferred,astheyminimizepartdeflectionandvibration.Thesystemcanoperatewithorwithoutredundancyreduction.Thedecisionmightbeguidedbytheanalysisphasebasedonthegeometricshapeofthepartandthemagnitudeoftheexternalforces,orahumanoperatormayallowredundancymanuallyandevenforceitbysettingtheinitialnumberofcontactstobemorethanthetheoreticalminimum(7in3D).Itispossibleforthekinematictesttosucceed,butthepotentialatsomecontactstobehigh.Thiscanhappenifacontactistrappedinalocalminimumofthepotentialfieldwherethepotentialishigh.Tohandlesuchsituationsweintroduceathresholdparametercalledmaximumallowablepotential.Arrangementswithpotentialatanycontacthigherthanthethresholdarediscarded.Thisnewtestmayleadtosituationsinwhichthealgorithmdoesnotterminatebecausenofixtureexistswithsufficientlysmallpotential.(Imaginetheextremeexamplethattheentireworkpartboundaryisaforbiddenregion.)Therefore,welimitthenumberofepochstoensuretermination.Inthecaseofsuchterminationthealgorithmoutputsthesolutionwiththelowestmaximumpotential.7.DiscussionTheproposedalgorithmsolvestheessentialprobleminfixturedesign–placingcontactpointsontheworkpartthatprovideformclosure.Itcanbeincorporatedinacompletefixturedesignsystemthatprovidesmodulesforfixturingtaskanalysisandlayoutdesign.Thealgorithmprovidesasimple,butpowerfulinterfacetothefixturingtaskanalysismodulesbasedonzonesofattractionandrepulsion.Admittedly,noteverycontactconfigurationcanbeimplementedbyacertainfixturingtoolkitinthelayoutdesignphase.Itmaybenecessarytoinvokethecontactplacementalgorithmseveraltimesuntilafeasibleconfigurationisproduced.7.1FixturingTaskAnalysisVariousfixturingheuristicsandrequirementscanbeexpressedintermsofzonesofhigherattractionorrepulsion.Forexample,attractionzonesmaybeusedtorepresent:datumsurfacesmachinedsurfacessurfaceswith“good”orientationareaswithgoodaccessibilityareasthatneedadditionalsupporttopreventdeflectionanddeformationRepulsionzonescanrepresent:inaccessibleareasforbiddenareasduetotoolaccessibilityrequirementssurfaceswithpoororientationcastsurfacessensitivesurfacesthatarevulnerabletoscratchingetc.AnimportantopenproblemishowtoassignnumericalvaluestotheP-zonepotential.Onepossibilityistoclassifytheconstraintsintoasmallnumberofcategories,e.g.“strongrepulsion”,“repulsion”,“neutral”,“attraction”,“strongattraction”.Allconstraintswithinthesamecategoryareassignedthesamepotential.Whilesuchaschemedoesnotreflectsubtledifferencesinprioritiesofthefixturingconstraints,itwillprobablycapturethemostimportantones.7.2FixtureCompletionAnimportantpropertyofthealgorithmisthatitallowspartialfixturestobeinput.Partialfixturesmaybeproducedbyotherfixturingagents,humansorcomputerprograms,whoplacecertainfixelstheyknowarenecessaryandhandtheworkovertoouralgorithmforcompletion.Thealgorithmthenplacesadditionalcontactssothatformclosureisachieved.Werepresentthepartialfixtureasfixedcontactswhichparticipateinthemutualrepulsionwiththefreecontacts,butarenotallowedtomove.Inthislight,thealgorithmmaybeviewedasafixturecompletionengine7.3Non-determinismandRedundancy.Duetotherandomnessoftheinitialplacementineachgeneration,thealgorithmisnon-deterministic,i.e.itcanproducedifferentsolutionsgiventhesameinput.Thisisdesirableasacontactpointconfigurationmayberejectedbythelayoutdesignmoduleandthealgorithmwillhavetoproduceanothersolution.Thealgorithmmayproduceredundantfixturesincertaincases.Redundantfixtureshavedrawbacksaswellasadvantagesovertheminimalones.Certainly,theyimpairloadabilityandwastecomponents.However,theymayalsominimizepartdeflectionanddeformation.Inpractice,humandesignersoftenproduceredundantfixtures.7.4EfficiencyTherunningtimeofthealgorithmdoesnotdependdirectlyonthecomplexityoftheworkpartboundary.Asimplecuboidandacomplexcurvedworkpartwillbediscretizedwithacomparablenumberofmeshnodes.Thisdecisionisbasedontheintuitiveassumptionthatafewhundredevenlydistributednodesontheboundaryprovideasufficientbasisforfixturabilityofanysolidobject.自動夾具在三維中的合成摘要夾具是一個安排在裝夾模塊中的位置,并進行工件在一個以制造業(yè)為主的運作。我們在這項工作中,考慮固定裝置與無摩擦點接觸,并給出了一個方案,為安置的接觸點上的非棱柱體三維工件。它是一個非確定性,勢場算法的接觸點安置。該方法提供了一個基本框架,為整合異構高層次裝夾代理商通過一個界面基于區(qū)的吸引力和斥力就工件邊界。該算法可能會產生多余的固定裝置,并能增加部分的解決辦法,以形成完整的封閉裝置。導言夾具是一個安排的裝夾模塊中的位置,并舉行工件在一個以制造業(yè)為主的操作,如加工,裝配和檢驗。裝夾是最重要的,以工業(yè)制造,并構成的一個重要部分,所有的制造成本。因此,夾具設計自動化是非常重要的。夾具設計涉及多種因素,例如,克制,決定性的位置,裝載和工具無障礙環(huán)境。高效的算法處理整個一系列的裝夾問題,為全面域工件尚不存在。最近,brost和彼得斯出版了一種算法[brost&彼得斯1996]延伸早前經典的工作brost和戈德堡[brost&戈德堡,1994],以三維域。這種算法,但需要縱向和橫向平面構成相當大一部分的工件邊界。它產生的所有可能的固定裝置,然后在利率,他們因此對某些衡量標準。這是在計算上昂貴的。Wagner等提出了一種算法,使用7個模塊的Struts安裝在一個盒子里,以夾具多面體[Wagner等,1995年]。這個算法是不全面的,在這個意義上講,它并不能有效地處理某些情況下,例如一個立方體的臉平行包裝盒。它也經歷著從高計算復雜度。wallack和精明提出另一種方法,并有"列舉與匯率"的味道[wallack&Canny,1996年]。它可以夾具棱柱工件與平面和圓柱垂直表面。龐塞提出了一種算法,利用曲率的影響,計算出固定裝置與四指為多面體零件[龐塞96]。在數(shù)量減少的接觸應提供更好的復雜算法,但質量的生產設備,似乎不亞于那些利用更多的接觸,并提供古典形式封閉。在這篇文章中我們提出了一種新的潛在場算法,有效地生產優(yōu)質夾具設計。我們的算法工程任意工件,并提供便捷的普遍手段,代表不同的裝夾要求。這種算法是一種直接泛化的二維勢場裝夾算法penev和requicha[penev&requicha1996]。我們認為,固定裝置與無摩擦點接觸。它已證明七名接觸是必要的。[somoff,1900],并有足夠的[markenscoff等人,1990年]固定任何工件在三維繼至少承諾的策略,過程夾具合成可分為三個階段-裝夾任務分析,接觸點安置以及夾具布局設計。在裝夾任務分析階段工件幾何和制造過程中分析,以確定各種參數(shù)的裝夾問題,如切削力,交通不便或禁止的領域,并找出特點,可用于申請裝夾裝置,例如機械平面,橫向和縱向表面,對平行表面,對垂直于表面,等等。圖1:接觸點安置在接觸點安置階段的一些聯(lián)絡點,是擺在工件邊界(圖1),因此由此產生的配置接觸滿足確定的限制因素,在分析階段,以及一些運動學要求必須得到滿足,任何夾具如完全克制。圖2:從接觸點配置,以夾具布局設計
在布局設計階段"水塔"的裝夾元件是建立并置于周圍工件等,以接觸的部分,在點位置計算,在接觸點安置階段。舉例來說,一個接觸點上,橫向工件表面(圖甲),可導致以實例化的額外開銷鉗說,接觸了工件在那個特定點(圖2B)條。這是一個以設計為功能的問題,制約了一套可裝夾單元及其參數(shù)。這實現(xiàn)了套聯(lián)絡點的功能規(guī)格及夾具布局是一個配置的部件。在本研究中,我們的重點聯(lián)系點安置,并把它納入其中部分和任務的分析。安排的接觸點必須滿足某些運動學條件,以一個基礎,有一個良好的夾具。特別是,它必須提供的封閉形式,確定位置,夾緊穩(wěn)定,脫離能力和裝載[Asada&By]。該算法采用離散化的工件邊界,類似的網(wǎng)格所使用的有限元分析。但是,不同于有限元分析,我們注意的是,對網(wǎng)格節(jié)點上,而不是放在網(wǎng)格元素。離散選擇為以下幾個原因:首先,我們可以處理工件任意幾何,只要把部分的邊界是一家集表面光滑,而我們知道如何主題詞。這項規(guī)定是滿意的所有表面用在現(xiàn)代CAD系統(tǒng)。其次,離散化是必要的,以避免昂貴的計算測曲線。第三,離散應該不會大大影響結果,只要有多少離散候選地點就邊界要遠遠大于人數(shù)表面上。在我國實施離散邊界構成的幾百點。實驗證據(jù)表明,這是不夠現(xiàn)實的工件。我們引進一個潛在場對工件邊界界定區(qū)的吸引與排斥,我們稱之為個P-區(qū)。接觸是仿照由于帶電粒子的這一舉動對邊界驅動這個潛在的領域。接觸也受到相互排斥的基礎上,之間的距離每兩個接觸,在扳手向量空間。該算法執(zhí)行了一系列的模擬時代。每一個劃時代的開始,以隨機配置,收益是通過一定數(shù)量的步驟,向低勢能和結束一場考驗運動學條件(形成封閉)。該算法終止時,一個劃時代的產生令人滿意的配置。傳播接觸點上的邊界,我們模擬斥力之間相互對他們。強度斥力之間的兩個接觸點,取決于它們之間的距離及其相應的扳手在扳手向量空間。我們的模擬收益,在有限的幾個步驟,或直至平衡是達成共識。由此產生的就業(yè),應該有很好的機會,導致一個好的夾具。這種隨機方法假定一套正元組的聯(lián)系點(對N大于3)表示,滿足運動學要求,有措施,都大于零,是比較大。這就是說,解空間非常大。雖然我們尚未能證明這一假設的數(shù)學,我們的實驗已經證實了它。此外,這項措施增加多少接觸點,例如,這是比較容易找到一個封閉的形式安排多于8分之7。概念斥力是必不可少的方法,因為這可以容易容納其他因素。我們可以把更多的斥力點就工件邊界,以代表故宮地區(qū)。我們還可以介紹中心的吸引力。這些對應的地方被推薦人的分析階段可取配售聯(lián)系點,例如,基準面表面。因此,我們提出一個勢場為代表一致異構裝夾信息。地區(qū)斥力對應地區(qū)的積極潛力。負電位,是與魅力。零電位對應于中立地區(qū)。初始隨機抽選的聯(lián)系點,被視為微粒,正在吸引或擊退一個勢場,其中包括成對斥力。目標體系的聯(lián)系點是為了最大限度地減少其總勢能。輸入輸入我們的算法包括CAD模型的工件邊界,以及一套堅實的P-區(qū)。每個人P-區(qū)界定一個潛在場的影響區(qū)域與非零收費。三離散工件邊界,第一步,我們的做法是把離散邊界的工件,因而創(chuàng)造候選人接觸點的位置,我們稱之為節(jié)點。離散化是做了引用標準工作面嵌入在幾何造型。離散是儲存在一個面向圖形數(shù)據(jù)結構。每個節(jié)點的圖形對應的一個節(jié)點上的網(wǎng)格。邊緣的圖形對應邊的網(wǎng)格連接相鄰節(jié)點。在每個節(jié)點螺絲代表聯(lián)系點,是計算和儲存。螺絲釘是一個簡潔和方便的代表性表面正常位置的節(jié)點。它是用來在所有運動測試基于螺旋理論。離散工件邊界第一步,我們的做法是把離散邊界的工件,因而創(chuàng)造候選人接觸點的位置,我們稱之為節(jié)點。離散化,是做了,引用標準表面嵌入在幾何造型,我們使用。離散是儲存在一個面向圖形數(shù)據(jù)結構。每個節(jié)點的圖形對應的一個節(jié)點上的網(wǎng)格。邊緣的圖形對應邊的網(wǎng)格連接相鄰節(jié)點。在每個節(jié)點螺絲代表聯(lián)系點,是計算和儲存。螺絲釘是一個簡潔和方便的代表性表面正常位置的節(jié)點。它是用來在所有運動測試基于螺旋理論。計算勢場聯(lián)系點,在我們的算法是受聯(lián)合行動,由兩部分組成,形成了潛在的領域。背景勢場是其中的組成部分。這是產生由P區(qū)和不依賴于地理位置的聯(lián)系點。背景勢場的計算方法是只計算一次,在一開始的算法。另一部分是動態(tài)的和,這是由于該斥力之間的接觸。動態(tài)部分是計算機在每一個劃時代的。計算的背景勢場的收益如下:首先,我們找到所有的節(jié)點所在內的P-區(qū)。我們履行會員分類每個節(jié)點對每個人P-區(qū)[tilove1980年]。如果節(jié)點內一定的P-區(qū),負責為P區(qū),有助于節(jié)點的電荷。貢獻,可以是正面的還是負面的,這取決于該標志區(qū)的電荷。經過這個程序的節(jié)點進行分類外,所有的P-區(qū)仍具有零收費。如果一個節(jié)點米制內的P-區(qū)Z1的,z2的...專用料ZK其負責厘米等于一筆收費的那些人P-區(qū):之后,負責該節(jié)點內的P-特區(qū),是我們評價我們開始通過計算潛在的所有節(jié)點。我們界定的潛在處于被控節(jié)點,初步等于它的電荷時=厘米。每個被控節(jié)點m的范圍內負責厘米,我們演出廣度優(yōu)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 5歲小孩正常視力標準
- Assessment I 第一課時 表格式(教學設計)-2024-2025學年湘少版(三起)英語六年級上冊
- 數(shù)據(jù)通信協(xié)議及設備操作手冊
- 售樓裝修設計合同
- 2024年春八年級歷史下冊 第15課 建設現(xiàn)代化的國防和人民軍隊教學實錄1(pdf) 川教版
- 三農地區(qū)土地流轉政策解讀與操作指南
- 2023一年級數(shù)學下冊 一 加與減(一)第1課時 買鉛筆教學實錄 北師大版
- 2024-2025學年高中歷史 專題三 中國社會主義建設道路的探索 一 社會主義建設在探索中曲折發(fā)展(1)教學教學實錄 人民版必修2
- 互聯(lián)網(wǎng)行業(yè)創(chuàng)新與發(fā)展研究協(xié)議
- DB3715-T 16-2022 魯西鮮食甜玉米生產技術規(guī)程
- 《《中央企業(yè)合規(guī)管理辦法》解讀》課件
- 橋式起重機作業(yè)安全培訓
- 2021醫(yī)師定期考核題庫(人文2000題)
- 2025年中考語文專題復習:寫作技巧 課件
- (2024)云南省公務員考試《行測》真題及答案解析
- 60歲以上務工免責協(xié)議書
- 靶向治療患者的護理常規(guī)
- 二年級心理健康教育課:你的感受我知道
- 2024年社區(qū)工作者考試必考1000題【歷年真題】
- 信息化戰(zhàn)爭課件
- 媒介文化十二講課件
評論
0/150
提交評論