版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆遼寧凌源市高三下學期第一次半月考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則2.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.3.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-284.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.565.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.76.設,則,則()A. B. C. D.7.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現.如圖所示的網格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.8.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內任取一點,則該點落在區(qū)域的概率為()A. B. C. D.9.已知,若則實數的取值范圍是()A. B. C. D.10.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值11.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.312.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列的前項和為,,且,則__________.14.已知,為正實數,且,則的最小值為________________.15.農歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____.16.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎者是_______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數方程為(,為參數),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經過點,求直線被曲線截得的線段的長.18.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽?。?,所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?19.(12分)已知函數.(Ⅰ)求函數的極值;(Ⅱ)若,且,求證:.20.(12分)已知三點在拋物線上.(Ⅰ)當點的坐標為時,若直線過點,求此時直線與直線的斜率之積;(Ⅱ)當,且時,求面積的最小值.21.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.22.(10分)已知函數,且曲線在處的切線方程為.(1)求的極值點與極值.(2)當,時,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
根據線面的位置關系,結合線面平行的判定定理、平行線的性質進行判斷即可.【題目詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據平行線的性質可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【題目點撥】本題考查了線面的位置關系,考查了平行線的性質,考查了推理論證能力.2、A【解題分析】
先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【題目詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【題目點撥】本題主要考查復數的基本運算和幾何意義,屬于基礎題.3、A【解題分析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.4、A【解題分析】
先求,再確定展開式中的有理項,最后求系數之和.【題目詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【題目點撥】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.5、C【解題分析】
根據程序框圖程序運算即可得.【題目詳解】依程序運算可得:,故選:C【題目點撥】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.6、A【解題分析】
根據換底公式可得,再化簡,比較的大小,即得答案.【題目詳解】,,.,顯然.,即,,即.綜上,.故選:.【題目點撥】本題考查換底公式和對數的運算,屬于中檔題.7、C【解題分析】
根據三視圖可知,該幾何體是由兩個圓錐和一個圓柱構成,由此計算出陀螺的表面積.【題目詳解】最上面圓錐的母線長為,底面周長為,側面積為,下面圓錐的母線長為,底面周長為,側面積為,沒被擋住的部分面積為,中間圓柱的側面積為.故表面積為,故選C.【題目點撥】本小題主要考查中國古代數學文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎題.8、C【解題分析】
據題意可知,是與面積有關的幾何概率,要求落在區(qū)域內的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【題目詳解】根據題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據幾何概率的計算公式可得,故選:C.【題目點撥】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區(qū)域的面積.9、C【解題分析】
根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【題目詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【題目點撥】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,10、D【解題分析】
A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【題目詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【題目點撥】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.11、A【解題分析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【題目點撥】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.12、A【解題分析】
若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據這個結論可以求出雙曲線離心率的取值范圍.【題目詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【題目點撥】本題考查雙曲線的性質及其應用,解題時要注意挖掘隱含條件.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由題意知,繼而利用等比數列的前項和為的公式代入求值即可.【題目詳解】解:由題意知,所以.故答案為:.【題目點撥】本題考查了等比數列的通項公式和求和公式,屬于中檔題.14、【解題分析】
由,為正實數,且,可知,于是,可得,再利用基本不等式即可得出結果.【題目詳解】解:,為正實數,且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【題目點撥】本題考查了基本不等式的性質應用,恰當變形是解題的關鍵,屬于中檔題.15、【解題分析】
(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【題目詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設球的半徑為,所以,所以球的體積.故答案為:;.【題目點撥】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.16、乙、丁【解題分析】
本題首先可根據題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結果是否沖突,最后即可得出結果.【題目詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【題目點撥】本題是一個簡單的合情推理題,能否根據“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關鍵,考查推理能力,是簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解題分析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經過點,可得的值,再將直線的參數方程代入曲線的標準方程,由直線參數方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數方程為(為參數).將直線的參數方程代入得,由直線參數方程的幾何意義可知,.18、(1)(2)選擇方案二更為劃算【解題分析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數學期望,比較大小得到答案.【題目詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【題目點撥】本題考查了概率的計算,數學期望,意在考查學生的計算能力和應用能力.19、(Ⅰ)極大值為:,無極小值;(Ⅱ)見解析.【解題分析】
(Ⅰ)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間即可求出函數的極值;(Ⅱ)得到,根據函數的單調性問題轉化為證明,即證,令,根據函數的單調性證明即可.【題目詳解】(Ⅰ)的定義域為且令,得;令,得在上單調遞增,在上單調遞減函數的極大值為,無極小值(Ⅱ),,即由(Ⅰ)知在上單調遞增,在上單調遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【題目點撥】本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,考查不等式的證明,考查運算求解能力及化歸與轉化思想,關鍵是能夠構造出合適的函數,將問題轉化為函數最值的求解問題,屬于難題.20、(Ⅰ);(Ⅱ)16.【解題分析】
(Ⅰ)設出直線的方程并代入拋物線方程,利用韋達定理以及斜率公式,變形可得;(Ⅱ)利用,,的斜率,求得的坐標,,再用基本不等式求得的最小值,從而可得三角形的面積的最小值.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《計量管理系統(tǒng)論》課件
- 腰椎血管瘤的健康宣教
- 羥磷灰石沉積病的臨床護理
- 踝部骨折的健康宣教
- 手部濕疹的臨床護理
- 2021年功率器件設計行業(yè)新潔能分析報告
- 《電工電子技術 》課件-第4章 變壓器及應用
- 孕期牙痛的健康宣教
- 安全生產培訓課件金能
- 《支付寶相關功能》課件
- 公司經營發(fā)展規(guī)劃
- 2024譯林版七年級英語上冊單詞(帶音標)
- 新媒體復習題與參考答案
- 2024-2025學年語文二年級上冊 部編版期末測試卷(含答案)
- 2024年公司職代會發(fā)言稿(3篇)
- 菏澤學院課程與教學論(專升本)復習題
- 動火作業(yè)應急預案樣本(4篇)
- 2024年意識形態(tài)工作專題會議記錄【6篇】
- 幼兒園公開課:大班語言《相反國》課件(優(yōu)化版)
- 2025年蛇年春聯(lián)帶橫批-蛇年對聯(lián)大全新春對聯(lián)集錦
- 23秋國家開放大學《液壓氣動技術》形考任務1-3參考答案
評論
0/150
提交評論