版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆內(nèi)蒙古開來中學(xué)高三下數(shù)學(xué)試題期中試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.22.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.3.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}4.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-25.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.6.已知,且,則在方向上的投影為()A. B. C. D.7.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.8.已知函數(shù),給出下列四個(gè)結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是()A. B. C. D.9.函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位10.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.11.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個(gè)單位長度B.向右平移個(gè)單位長度C.向左平移個(gè)單位長度D.向右平移個(gè)單位長度12.已知向量,是單位向量,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則________,的面積為________.14.若向量滿足,則實(shí)數(shù)的取值范圍是____________.15.若展開式的二項(xiàng)式系數(shù)之和為64,則展開式各項(xiàng)系數(shù)和為__________.16.在平面直角坐標(biāo)系中,點(diǎn)在曲線:上,且在第四象限內(nèi).已知曲線在點(diǎn)處的切線為,則實(shí)數(shù)的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.18.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.19.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.20.(12分)在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時(shí),求的值.21.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計(jì)到最長,求的最大值.22.(10分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【題目詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【題目點(diǎn)撥】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.2、B【解題分析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【題目詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【題目點(diǎn)撥】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.3、C【解題分析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【題目詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【題目點(diǎn)撥】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.4、B【解題分析】
通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡求解即可.【題目詳解】復(fù)數(shù)滿足,∴,故選B.【題目點(diǎn)撥】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.5、B【解題分析】
三視圖對應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【題目詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【題目點(diǎn)撥】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來求其體積,本題屬于基礎(chǔ)題.6、C【解題分析】
由向量垂直的向量表示求出,再由投影的定義計(jì)算.【題目詳解】由可得,因?yàn)椋裕试诜较蛏系耐队盀椋蔬x:C.【題目點(diǎn)撥】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.7、D【解題分析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【題目詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【題目點(diǎn)撥】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.8、C【解題分析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【題目詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯(cuò)誤;當(dāng)時(shí),,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【題目點(diǎn)撥】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.9、A【解題分析】依題意有的周期為.而,故應(yīng)左移.10、D【解題分析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).11、D【解題分析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【題目詳解】因?yàn)?,所以只需將的圖象向右平移個(gè)單位.【題目點(diǎn)撥】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.12、C【解題分析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【題目詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【題目點(diǎn)撥】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用余弦定理可求得的值,進(jìn)而可得出的值,最后利用三角形的面積公式可得出的面積.【題目詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【題目點(diǎn)撥】本題考查利用余弦定理解三角形,同時(shí)也考查了三角形面積的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.14、【解題分析】
根據(jù)題意計(jì)算,解得答案.【題目詳解】,故,解得.故答案為:.【題目點(diǎn)撥】本題考查了向量的數(shù)量積,意在考查學(xué)生的計(jì)算能力.15、1【解題分析】
由題意得展開式的二項(xiàng)式系數(shù)之和求出的值,然后再計(jì)算展開式各項(xiàng)系數(shù)的和.【題目詳解】由題意展開式的二項(xiàng)式系數(shù)之和為,即,故,令,則展開式各項(xiàng)系數(shù)的和為.故答案為:【題目點(diǎn)撥】本題考查了二項(xiàng)展開式的二項(xiàng)式系數(shù)和項(xiàng)的系數(shù)和問題,需要運(yùn)用定義加以區(qū)分,并能夠運(yùn)用公式和賦值法求解結(jié)果,需要掌握解題方法.16、【解題分析】
先設(shè)切點(diǎn),然后對求導(dǎo),根據(jù)切線方程的斜率求出切點(diǎn)的橫坐標(biāo),代入原函數(shù)求出切點(diǎn)的縱坐標(biāo),即可得出切得,最后將切點(diǎn)代入切線方程即可求出實(shí)數(shù)的值.【題目詳解】解:依題意設(shè)切點(diǎn),因?yàn)?則,又因?yàn)榍€在點(diǎn)處的切線為,,解得,又因?yàn)辄c(diǎn)在第四象限內(nèi),則,.則又因?yàn)辄c(diǎn)在切線上.所以.所以.故答案為:【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算法則和已知切線斜率求出切點(diǎn)坐標(biāo),本題屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見證明;(Ⅱ)【解題分析】
(Ⅰ)取的中點(diǎn)為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點(diǎn),可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量為,設(shè)與平面所成角為,則,即可得到答案.【題目詳解】解:(Ⅰ)取的中點(diǎn)為,連結(jié).由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點(diǎn),∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結(jié).由是正三角形,且為中點(diǎn),則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,∴,,.設(shè)平面的一個(gè)法向量為.由可得,.令,則,,∴.設(shè)與平面所成角為,則.【題目點(diǎn)撥】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學(xué)生的邏輯推理能力與計(jì)算求解能力,屬于中檔題.18、(1)見解析;(2).【解題分析】
(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【題目詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【題目點(diǎn)撥】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.19、(1)(2)【解題分析】
(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【題目詳解】(1)因?yàn)榻菫殁g角,,所以,又,所以,且,所以.(2)因?yàn)椋?,所以,又,則,所以.20、(1);(2).【解題分析】
(1)在已知極坐標(biāo)方程兩邊同時(shí)乘以ρ后,利用ρcosθ=x,ρsinθ=y(tǒng),ρ2=x2+y2可得曲線C的直角坐標(biāo)方程;(2)聯(lián)立直線l的參數(shù)方程與x2=4y由韋達(dá)定理以及參數(shù)的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【題目詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時(shí)乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標(biāo)方程為:x2=4y.(2)聯(lián)立直線l的參數(shù)方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【題目點(diǎn)撥】本題考查了簡單曲線的極坐標(biāo)方程,屬中檔題.21、(1),;(2)米.【解題分析】
(1)過點(diǎn)作于點(diǎn)再在中利用正弦定理求解,再根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育心理學(xué)綜合練習(xí)試卷B卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)押題練習(xí)試題B卷含答案
- 重慶市西南大學(xué)附中2024-2025學(xué)年高一上定時(shí)檢測(一)語文試題含答案
- 2024年度xx村監(jiān)測對象風(fēng)險(xiǎn)消除民主評議會(huì)議記錄
- 湖南省長沙市長郡郡維中學(xué)2022-2023學(xué)年九年級上學(xué)期入學(xué)英語試卷(含答案)
- 2024年長沙市事業(yè)單位招聘計(jì)算機(jī)崗位專業(yè)知識試題
- 2024年培訓(xùn)學(xué)校業(yè)務(wù)外包協(xié)議
- 2024年工程咨詢服務(wù)具體協(xié)議樣式
- 2024醫(yī)療銷售企業(yè)合作協(xié)議樣本
- 2024房屋建筑施工勞務(wù)協(xié)議詳例
- 養(yǎng)老機(jī)構(gòu)(養(yǎng)老院)全套服務(wù)管理實(shí)用手冊
- 企業(yè)文化管理第八章企業(yè)文化的比較與借鑒
- WST311-2023《醫(yī)院隔離技術(shù)標(biāo)準(zhǔn)》
- 《縷書香伴我同行》課件
- 建設(shè)項(xiàng)目竣工環(huán)境保護(hù)驗(yàn)收管理辦法
- 100道解方程 計(jì)算題
- 賽事承辦服務(wù)投標(biāo)方案(技術(shù)方案)
- 概率論(華南農(nóng)業(yè)大學(xué))智慧樹知到課后章節(jié)答案2023年下華南農(nóng)業(yè)大學(xué)
- 上海中考英語專項(xiàng)練習(xí)-動(dòng)詞的時(shí)態(tài)-練習(xí)卷一和參考答案
- GB 4806.7-2023食品安全國家標(biāo)準(zhǔn)食品接觸用塑料材料及制品
- 我們的出行方式 (教學(xué)設(shè)計(jì))2022-2023學(xué)年綜合實(shí)踐活動(dòng)四年級上冊 全國通用
評論
0/150
提交評論