版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆安徽省池州市數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.某果園2017年水果產(chǎn)量為100噸,2019年水果產(chǎn)量為144噸,則該果園水果產(chǎn)量的年平均增長率為()A.10% B.20% C.25% D.40%2.拋物線的項點坐標(biāo)是()A. B. C. D.3.已知為常數(shù),點在第二象限,則關(guān)于的方程根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷4.將下列多項式分解因式,結(jié)果中不含因式x﹣1的是()A.x2﹣1 B.x2+2x+1 C.x2﹣2x+1 D.x(x﹣2)﹣(x﹣2)5.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個6.二次函數(shù)y=ax2+bx+4(a≠0)中,若b2=4a,則()A.y最大=5 B.y最?。? C.y最大=3 D.y最?。?7.已知拋物線y=ax2+bx+c(a<0)過A(-3,0),B(1,0),C(-5,y1),D(5,y2)四點,則y1與y2的大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能確定8.拋物線如圖所示,給出以下結(jié)論:①,②,③,④,⑤,其中正確的個數(shù)是()A.2個 B.3個 C.4個 D.5個9.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<310.對于二次函數(shù)y=﹣(x﹣2)2﹣3,下列說法正確的是()A.當(dāng)x>2時,y隨x的增大而增大 B.當(dāng)x=2時,y有最大值﹣3C.圖象的頂點坐標(biāo)為(﹣2,﹣3) D.圖象與x軸有兩個交點11.拋物線y=﹣3(x﹣1)2+3的頂點坐標(biāo)是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)12.二次函數(shù)圖象如圖所示,下列結(jié)論:①;②;③;④;⑤有兩個相等的實數(shù)根,其中正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,已知⊙O的半徑為2,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=∠AOC,且AD=CD,則圖中陰影部分的面積等于______.14.如圖,△ABC中,AE交BC于點D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,則DE的長等于__________________.15.如圖,將繞頂點A順時針旋轉(zhuǎn)后得到,且為的中點,與相交于,若,則線段的長度為________.16.在平面直角坐標(biāo)系中,點與點關(guān)于原點對稱,則__________.17.當(dāng)時,函數(shù)的最大值是8則=_________.18.計算:_____________.三、解答題(共78分)19.(8分)(問題情境)(1)古希臘著名數(shù)學(xué)家歐幾里得在《幾何原本》提出了射影定理,又稱“歐幾里德定理”:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項,每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項.射影定理是數(shù)學(xué)圖形計算的重要定理.其符號語言是:如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,則:(1)AC2=AB·AD;(2)BC2=AB·BD;(3)CD2=AD·BD;請你證明定理中的結(jié)論(1)AC2=AB·AD.(結(jié)論運用)(2)如圖2,正方形ABCD的邊長為3,點O是對角線AC、BD的交點,點E在CD上,過點C作CF⊥BE,垂足為F,連接OF,①求證:△BOF∽△BED;②若,求OF的長.20.(8分)如圖,直線y=ax+b與x軸交于點A(4,0),與y軸交于點B(0,﹣2),與反比例函數(shù)y=(x>0)的圖象交于點C(6,m).(1)求直線和反比例函數(shù)的表達(dá)式;(2)連接OC,在x軸上找一點P,使△OPC是以O(shè)C為腰的等腰三角形,請求出點P的坐標(biāo);(3)結(jié)合圖象,請直接寫出不等式≥ax+b的解集.21.(8分)為加強學(xué)生身體鍛煉,某校開展體育“大課間”活動,學(xué)校決定在學(xué)生中開設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動項目.為了了解學(xué)生對五種項目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:(1)在這項調(diào)查中,共調(diào)查了_______名學(xué)生;(2)請將兩個統(tǒng)計圖補充完整;(3)若該校有1200名在校學(xué)生,請估計喜歡排球的學(xué)生大約有多少人.22.(10分)如圖是一紙杯,它的母線AC和EF延長后形成的立體圖形是圓錐,該圓錐的側(cè)面展開圖形是扇形OAB.經(jīng)測量,紙杯上開口圓的直徑是6cm,下底面直徑為4cm,母線長為EF=8cm.求扇形OAB的圓心角及這個紙杯的表面積(面積計算結(jié)果用表示).23.(10分)如圖,中,,,為內(nèi)部一點,.求證:.24.(10分)如圖,AB是⊙O的直徑,點D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;(2)若⊙O的半徑為1,求圖中陰影部分的面積(結(jié)果保留π).25.(12分)2019年鞍山市出現(xiàn)了豬肉價格大幅上漲的情況,經(jīng)過對我市某豬肉經(jīng)銷商的調(diào)查發(fā)現(xiàn),當(dāng)豬肉售價為60元/千克時,每天可以銷售80千克,日銷售利潤為1600元(不考慮其他因素對利潤的影響):售價每上漲1元,則每天少售出2千克;若設(shè)豬肉售價為x元/千克,日銷售量為y千克.(1)求y關(guān)于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若物價管理部門規(guī)定豬肉價格不高于68元/千克,當(dāng)售價是多少元/千克時,日銷售利潤最大,最大利潤是多少元.26.如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點且與反比例函數(shù)在第一象限的圖象交于點軸于點.根據(jù)函數(shù)圖象,直接寫出當(dāng)反比例函數(shù)的函數(shù)值時,自變量的取值范圍;動點在軸上,軸交反比例函數(shù)的圖象于點.若.求點的坐標(biāo).
參考答案一、選擇題(每題4分,共48分)1、B【分析】2019年水果產(chǎn)量=2017年水果產(chǎn)量,列出方程即可.【詳解】解:根據(jù)題意得,解得(舍去)故答案為20%,選B.【點睛】本題考查了一元二次方程的應(yīng)用.2、D【分析】由二次函數(shù)頂點式:,得出頂點坐標(biāo)為,根據(jù)這個知識點即可得出此二次函數(shù)的頂點坐標(biāo).【詳解】解:由題知:拋物線的頂點坐標(biāo)為:故選:D.【點睛】本題主要考查的二次函數(shù)的頂點式的特點以及頂點坐標(biāo)的求法,掌握二次函數(shù)的頂點式是解題的關(guān)鍵.3、B【分析】根據(jù)判別式即可求出答案.【詳解】解:由題意可知:,
∴,
故選:B.【點睛】本題考查的是一元二次方程根的判別式,解題的關(guān)鍵是熟練運用根的判別式,本題屬于基礎(chǔ)題型.4、B【分析】原式各項分解后,即可做出判斷.【詳解】A、原式=(x+1)(x-1),含因式x-1,不合題意;
B、原式=(x+1)2,不含因式x-1,符合題意;
C、原式=(x-1)2,含因式x-1,不合題意;
D、原式=(x-2)(x-1),含因式x-1,不合題意,
故選:B.【點睛】此題考查因式分解-運用公式法,提公因式法,熟練掌握因式分解的方法是解題的關(guān)鍵.5、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.6、D【分析】根據(jù)題意得到y(tǒng)=ax2+bx+4=,代入頂點公式即可求得.【詳解】解:∵b2=4a,∴,∴∵,∴y最小值=,故選:D.【點睛】本題考查了二次函數(shù)最值問題,解決本題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì),準(zhǔn)確表達(dá)出二次函數(shù)的頂點坐標(biāo).7、A【分析】根據(jù)二次函數(shù)圖象的對稱軸位置以及開口方向,可得C(-5,y1)距對稱軸的距離比D(5,y2)距對稱軸的距離小,進(jìn)而即可得到答案.【詳解】∵拋物線y=ax2+bx+c(a<0)過A(-3,0),B(1,0),∴拋物線的對稱軸是:直線x=-1,且開口向下,∵C(-5,y1)距對稱軸的距離比D(5,y2)距對稱軸的距離小,∴y1>y2,故選A.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握用拋物線的軸對稱性比較二次函數(shù)值的大小,是解題的關(guān)鍵.8、D【分析】根據(jù)拋物線開口方向、拋物線的對稱軸位置和拋物線與y軸的交點位置可判斷a、b、c的符號,再根據(jù)與x軸的交點坐標(biāo)代入分析即可得到結(jié)果;【詳解】∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的右側(cè),∴b<0,∵拋物線與y軸的交點在x軸的下方,∴c<0,∴ab<0,故①②正確;當(dāng)x=-1時,,故③正確;當(dāng)x=1時,根據(jù)圖象可得,故④正確;根據(jù)函數(shù)圖像與x軸有兩個交點可得,故⑤正確;故答案選D.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,準(zhǔn)確分析每一個數(shù)據(jù)是解題的關(guān)鍵.9、B【解析】設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據(jù)二次函數(shù)的圖像性質(zhì)可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據(jù)圖像的開口方向即可得出答案.【詳解】設(shè)y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標(biāo)為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數(shù)圖像性質(zhì)及平移的特點,根據(jù)開口方向確定函數(shù)的增減性是解題關(guān)鍵.10、B【分析】根據(jù)二次函數(shù)的性質(zhì)對進(jìn)行判斷;通過解方程﹣(x﹣2)2﹣3=0對D進(jìn)行判斷即可.【詳解】∵二次函數(shù)y=﹣(x﹣2)2﹣3,∴當(dāng)x>2時,y隨x的增大而減小,故選項A錯誤;當(dāng)x=2時,該函數(shù)取得最大值,最大值是﹣3,故選項B正確;圖象的頂點坐標(biāo)為(2,﹣3),故選項C錯誤;當(dāng)y=0時,0=﹣(x﹣2)2﹣3,即,無解,故選項D錯誤;故選:B.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),把求二次函數(shù)與軸的交點問題轉(zhuǎn)化為解關(guān)于的一元二次方程問題可求得交點橫坐標(biāo),牢記其的頂點坐標(biāo)、對稱軸及開口方向是解答本題的關(guān)鍵.11、D【分析】直接根據(jù)頂點式的特點求頂點坐標(biāo).【詳解】解:∵y=﹣3(x﹣1)2+3是拋物線的頂點式,∴頂點坐標(biāo)為(1,3).故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x?h)2+k中,對稱軸為x=h,頂點坐標(biāo)為(h,k).12、D【分析】根據(jù)圖象與x軸有兩個交點可判定①;根據(jù)對稱軸為可判定②;根據(jù)開口方向、對稱軸和與y軸的交點可判定③;根據(jù)當(dāng)時以及對稱軸為可判定④;利用二次函數(shù)與一元二次方程的聯(lián)系可判定⑤.【詳解】解:①根據(jù)圖象與x軸有兩個交點可得,此結(jié)論正確;②對稱軸為,即,整理可得,此結(jié)論正確;③拋物線開口向下,故,所以,拋物線與y軸的交點在y軸的正半軸,所以,故,此結(jié)論錯誤;④當(dāng)時,對稱軸為,所以當(dāng)時,即,此結(jié)論正確;⑤當(dāng)時,只對應(yīng)一個x的值,即有兩個相等的實數(shù)根,此結(jié)論正確;綜上所述,正確的有4個,故選:D.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)與一元二次方程,掌握二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、π﹣【分析】根據(jù)題意可以得出三角形ACD是等邊三角形,進(jìn)而求出∠AOD,再根據(jù)直角三角形求出OE、AD,從而從扇形的面積減去三角形AOD的面積即可得出陰影部分的面積.【詳解】解:連接AC,OD,過點O作OE⊥AD,垂足為E,∵∠ABC=∠AOC,∠AOC=2∠ADC,∠ABC+∠ADC=180°,∴∠ABC=120°,∠ADC=60°,∵AD=CD,∴△ACD是正三角形,∴∠AOD=120°,OE=2×cos60°=1,AD=2×sin60°×2=2,∴S陰影部分=S扇形OAD﹣S△AOD=×π×22﹣×2×1=π﹣,故答案為:π﹣.【點睛】本題主要考察扇形的面積和三角形的面積,熟練掌握面積公式及計算法則是解題關(guān)鍵.14、【解析】試題分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故選B.考點:相似三角形的判定與性質(zhì).15、【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可知△ACC1為等邊三角形,進(jìn)而得出BC1=CC1=AC1=2,△ADC1是含20°的直角三角形,得到DC1的長,利用線段的和差即可得出結(jié)論.【詳解】根據(jù)旋轉(zhuǎn)的性質(zhì)可知:AC=AC1,∠CAC1=60°,B1C1=BC,∠B1C1A=∠C,∴△ACC1為等邊三角形,∴∠AC1C=∠C=60°,CC1=AC1.∵C1是BC的中點,∴BC1=CC1=AC1=2,∴∠B=∠C1AB=20°.∵∠B1C1A=∠C=60°,∴∠ADC1=180°-(∠C1AB+∠B1C1A)=180°-(20°+60°)=90°,∴DC1=AC1=1,∴B1D=B1C1-DC1=4-1=2.故答案為:2.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及直角三角形的性質(zhì),得出△ADC1是含20°的直角三角形是解答本題的關(guān)鍵.16、1【分析】根據(jù)在平面直角坐標(biāo)系中的點關(guān)于原點對稱的點的坐標(biāo)為,進(jìn)而求解.【詳解】∵點與點關(guān)于原點對稱,∴,故答案為:1.【點睛】本題考查平面直角坐標(biāo)系中關(guān)于原點對稱點的特征,即兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反.17、或【分析】先求出二次函數(shù)的對稱軸,根據(jù)開口方向分類討論決定取值,列出關(guān)于a的方程,即可求解;【詳解】解:函數(shù),則對稱軸為x=2,對稱軸在范圍內(nèi),當(dāng)a<0時,開口向下,有最大值,最大值在x=2處取得,即=8,解得a=;當(dāng)a>0時,開口向上,最大值在x=-3處取得,即=8,解得a=;故答案為:或;【點睛】本題主要考查了二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.18、1【分析】由題意首先計算乘方、開方和特殊三角函數(shù),然后從左向右依次進(jìn)行加減計算,即可求出算式的值.【詳解】解:===1故答案為1.【點睛】本題主要考查實數(shù)的運算,要熟練掌握,解答此題的關(guān)鍵是要明確在進(jìn)行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進(jìn)行;另外,有理數(shù)的運算律在實數(shù)范圍內(nèi)仍然適用.三、解答題(共78分)19、(1)見解析;(2)①見解析;②【分析】(1)證明△ACD∽△ABC,即可得證;
(2)①BC2=BO?BD,BC2=BF?BE,即BO?BD=BF?BE,即可求解;②在Rt△BCE中,BC=3,BE=,利用△BOF∽△BED,即可求解.【詳解】解:(1)證明:如圖1,∵CD⊥AB,
∴∠BDC=90°,
而∠A=∠A,∠ACB=90°,
∴△ACD∽△ABC,
∴AC:AB=AD:AC,
∴AC2=AB·AD;
(2)①證明:如圖2,
∵四邊形ABCD為正方形,
∴OC⊥BO,∠BCD=90°,
∴BC2=BO?BD,
∵CF⊥BE,
∴BC2=BF?BE,
∴BO?BD=BF?BE,
即,而∠OBF=∠EBD,
∴△BOF∽△BED;
②∵在Rt△BCE中,BC=3,BE=,∴CE=,∴DE=BC-CE=2;
在Rt△OBC中,OB=BC=,∵△BOF∽△BED,∴,即,∴OF=.【點睛】本題為三角形相似綜合題,涉及到勾股定理運用、正方形基本知識等,難點在于找到相似三角形,此類題目通常難度較大.20、(1)y=x﹣1;y=;(1)點P1的坐標(biāo)為(,0),點P1的坐標(biāo)為(﹣,0),(11,0);(3)0<x≤2【解析】(1)根據(jù)點A,B的坐標(biāo),利用待定系數(shù)法即可求出直線AB的函數(shù)表達(dá)式,利用一次函數(shù)圖象上點的坐標(biāo)特征可得出點C的坐標(biāo),由點C的坐標(biāo),利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;(1)過點C作CD⊥x軸,垂足為D點,利用勾股定理看求出OC的長,分OC=OP和CO=CP兩種情況考慮:①當(dāng)OP=OC時,由OC的長可得出OP的長,進(jìn)而可求出點P的坐標(biāo);②當(dāng)CO=CP時,利用等腰三角形的性質(zhì)可得出OD=PD,結(jié)合OD的長可得出OP的長,進(jìn)而可得出點P的坐標(biāo);(3)觀察圖形,由兩函數(shù)圖象的上下位置關(guān)系,即可求出不等式≥ax+b的解集.【詳解】解:(1)將A(4,0),B(0,﹣1)代入y=ax+b,得:,解得:,∴直線AB的函數(shù)表達(dá)式為y=x﹣1.當(dāng)x=2時,y=x﹣1=1,∴點C的坐標(biāo)為(2,1).將C(2,1)代入y=,得:1=,解得:k=2,∴反比例函數(shù)的表達(dá)式為y=.(1)過點C作CD⊥x軸,垂足為D點,則OD=2,CD=1,∴OC=.∵OC為腰,∴分兩種情況考慮,如圖1所示:①當(dāng)OP=OC時,∵OC=,∴OP=,∴點P1的坐標(biāo)為(,0),點P1的坐標(biāo)為(﹣,0);②當(dāng)CO=CP時,DP=DO=2,∴OP=1OD=11,∴點P3的坐標(biāo)為(11,0).(3)觀察函數(shù)圖象,可知:當(dāng)0<x<2時,反比例函數(shù)y=的圖象在直線y=x﹣1的上方,∴不等式≥ax+b的解集為0<x≤2.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一次函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求反比例函數(shù)解析式、等腰三角形的性質(zhì)、勾股定理以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出一次(反比例)函數(shù)的關(guān)系式;(1)分OC=OP和CO=CP兩種情況求出點P的坐標(biāo);(3)根據(jù)兩函數(shù)圖象的上下位置關(guān)系,找出不等式的解集.21、(1)200;(2)答案見解析;(3)240人.【分析】(1)由圖1可得喜歡“B項運動”的有10人;由圖2可得喜歡“B項運動”的占總數(shù)的5%;由10÷5%即可求得總?cè)藬?shù)為200人;(2)①由圖1可知喜歡B、C、D、E四項運動的人數(shù)分別為10、40、30、40人,由此可得喜歡A項運動的人數(shù)為:200-10-40-30-40=80,由此在圖1中補出表示A的條形即可;②由80÷200×100%可得喜歡A項運動的人所占的百分比;由30÷200×100%可得喜歡D項運動的人所占的百分比;把所得百分比填入圖2中相應(yīng)的位置即可;(3)由1200×20%可得全校喜歡“排球”運動的人數(shù).【詳解】解:(1)由圖1可得喜歡“B項運動”的有10人,由圖2可得喜歡“B項運動”的占總數(shù)的5%,∴這次抽查的總?cè)藬?shù)為:10÷5%=200(人);(2)①由圖1可知喜歡B、C、D、E四項運動的人數(shù)分別為10、40、30、40人,∴喜歡A項運動的人數(shù)為:200-10-40-30-40=80,②喜歡A項運動的人所占的百分比為:80÷200×100%=40%;喜歡D項運動的人所占的百分比為:30÷200×100%=15%;根據(jù)上述所得數(shù)據(jù)補充完兩幅圖形如下:(3)從抽樣調(diào)查中可知,喜歡排球的人約占20%,可以估計全校學(xué)生中喜歡排球的學(xué)生約占20%,人數(shù)約為:1200×20%=240(人).答:全校學(xué)生中,喜歡排球的人數(shù)約為240人.22、扇形OAB的圓心角為45°,紙杯的表面積為44.【解析】試題分析:設(shè)扇形OAB的圓心角為n°,然后根據(jù)弧長AB等于紙杯上開口圓周長和弧長CD等于紙杯下底面圓周長,列關(guān)于n和OF的方程組,解方程組可得出n和OF的值,然后根據(jù)紙杯表面積=紙杯側(cè)面積+紙杯底面積=扇形OAB的面積-扇形OCD的面積+紙杯底面積,計算即可.試題解析:設(shè)扇形OAB的圓心角為n°弧長AB等于紙杯上開口圓周長:弧長CD等于紙杯下底面圓周長:可列方程組,解得所以扇形OAB的圓心角為45°,OF等于16cm紙杯表面積=紙杯側(cè)面積+紙杯底面積=扇形OAB的面積-扇形OCD的面積+紙杯底面積即S紙杯表面積==考點:錐的側(cè)面展開圖、弧長公式、扇形面積公式.23、詳見解析【分析】利用等式的性質(zhì)判斷出∠PBC=∠PAB,即可得出結(jié)論;【詳解】解:,,又,,,又,.【點睛】此題主要考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),判斷出∠PBC=∠PAB是解本題的關(guān)鍵.24、(1)直線CD與⊙O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛南醫(yī)學(xué)院《攝影與攝像》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《能源化工專業(yè)英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 甘肅中醫(yī)藥大學(xué)《麻醉設(shè)備學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2022年上半年盧姨筆試幼兒綜合教資押題(含答案)
- 三年級數(shù)學(xué)上冊第五單元倍的認(rèn)識第1課時倍的認(rèn)識教案新人教版
- 三年級科學(xué)下冊四植物和我們1植物和我們的生活教案新人教版
- 員工培訓(xùn)課件服從
- 禮儀常識培訓(xùn)課件
- 面部手法培訓(xùn)課件
- 《水環(huán)境公共政策》課件
- 中草藥產(chǎn)業(yè)園規(guī)劃方案
- 護(hù)理文書書寫規(guī)范
- MOOC 計量經(jīng)濟(jì)學(xué)-西南財經(jīng)大學(xué) 中國大學(xué)慕課答案
- 無人機(jī)測試與評估標(biāo)準(zhǔn)
- 2024版國開電大法學(xué)本科《國際經(jīng)濟(jì)法》歷年期末考試總題庫
- 2023-年2月山東公務(wù)員錄用考試《申論B》考試真題
- 中國人壽保險培訓(xùn)
- 2024年國家電投五凌電力限公司招聘歷年高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 陪診服務(wù)培訓(xùn)課件模板
- 兒童食物過敏的流行病學(xué)調(diào)查與風(fēng)險因素分析
- 云邊有個小賣部詳細(xì)介紹
評論
0/150
提交評論