河南省新野縣一中2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
河南省新野縣一中2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
河南省新野縣一中2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
河南省新野縣一中2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
河南省新野縣一中2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省新野縣一中2024屆數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從甲、乙、丙三人中,任選兩名代表,甲被選中的概率為()A. B. C. D.2.下列各角中,與126°角終邊相同的角是()A. B. C. D.3.計算()A. B. C. D.4.若是兩條不同的直線,是三個不同的平面,則下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則5.下列函數(shù)的最小值為的是()A. B.C. D.6.若存在正實數(shù),使得,則()A.實數(shù)的最大值為 B.實數(shù)的最小值為C.實數(shù)的最大值為 D.實數(shù)的最小值為7.若角的終邊過點,則()A. B. C. D.8.在等差數(shù)列an中,若a2+A.100 B.90 C.95 D.209.已知是球O的球面上四點,面ABC,,則該球的半徑為()A. B. C. D.10.在中,角所對的邊分別為,若的面積,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與圓交于兩點,若,則____.12.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)的三個內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜公式”為.若,,則用“三斜公式”求得的面積為______.13.在中,,是邊上一點,且滿足,若,則_________.14.已知函數(shù)fx=cosx+2cosx,15.已知數(shù)列滿足,,則_______;_______.16.若是等差數(shù)列,首項,,,則使前項和最大的自然數(shù)是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.渦陽縣某華為手機(jī)專賣店對市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,在已購買華為手機(jī)的名市民中,隨機(jī)抽取名,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:分組(歲)頻數(shù)合計(1)求頻數(shù)分布表中、的值,并補(bǔ)全頻率分布直方圖;(2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機(jī)宣傳活動,現(xiàn)從這人中隨機(jī)選取人各贈送一部華為手機(jī),求這人中恰有人的年齡在內(nèi)的概率.18.2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取人調(diào)查專項附加扣除的享受情況.(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如下表,其中“”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.員工項目ABCDEF子女教育○○×○×○繼續(xù)教育××○×○○大病醫(yī)療×××○××住房貸款利息○○××○○住房租金××○×××贍養(yǎng)老人○○×××○(i)試用所給字母列舉出所有可能的抽取結(jié)果;(ii)設(shè)為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發(fā)生的概率.19.已知向量且,(1)求向量與的夾角;(2)求的值.20.學(xué)生會有共名同學(xué),其中名男生名女生,現(xiàn)從中隨機(jī)選出名代表發(fā)言.求:同學(xué)被選中的概率;至少有名女同學(xué)被選中的概率.21.的內(nèi)角、、的對邊分別為、、,且.(Ⅰ)求角;(Ⅱ)若,且邊上的中線的長為,求邊的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

采用列舉法寫出總事件,再結(jié)合古典概型公式求解即可【題目詳解】被選出的情況具體有:甲乙、甲丙、乙丙,甲被選中有兩種,則故選:D2、B【解題分析】

寫出與126°的角終邊相同的角的集合,取k=1得答案.【題目詳解】解:與126°的角終邊相同的角的集合為{α|α=126°+k?360°,k∈Z}.取k=1,可得α=486°.∴與126°的角終邊相同的角是486°.故選B.【題目點撥】本題考查終邊相同角的計算,是基礎(chǔ)題.3、A【解題分析】

根據(jù)對數(shù)運算,即可求得答案.【題目詳解】故選:A.【題目點撥】本題主要考查了對數(shù)運算,解題關(guān)鍵是掌握對數(shù)運算基礎(chǔ)知識,考查了計算能力,屬于基礎(chǔ)題.4、C【解題分析】

試題分析:兩個平面垂直,一個平面內(nèi)的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內(nèi)的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據(jù)面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關(guān)系.【題目詳解】請在此輸入詳解!5、C【解題分析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點睛:本題考查基本不等式,考查通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法.6、C【解題分析】

將題目所給方程轉(zhuǎn)化為關(guān)于的一元二次方程,根據(jù)此方程在上有解列不等式組,解不等式組求得的取值范圍,進(jìn)而求出正確選項.【題目詳解】由得,當(dāng)時,方程為不和題意,故這是關(guān)于的一元二次方程,依題意可知,該方程在上有解,注意到,所以由解得,故實數(shù)的最大值為,所以選C.【題目點撥】本小題主要考查一元二次方程根的分布問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.7、D【解題分析】

解法一:利用三角函數(shù)的定義求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函數(shù)的定義求出,再利用二倍角公式以及弦化切的思想求出的值.【題目詳解】解法一:由三角函數(shù)的定義可得,,,故選D.解法二:由三角函數(shù)定義可得,所以,,故選D.【題目點撥】本題考查三角函數(shù)的定義與二倍角公式,考查同角三角函數(shù)的定義,利用三角函數(shù)的定義求值是解本題的關(guān)鍵,同時考查了同角三角函數(shù)基本思想的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.8、B【解題分析】

利用等差數(shù)列的性質(zhì),即下標(biāo)和相等對應(yīng)項的和相等,得到a2【題目詳解】∵數(shù)列an為等差數(shù)列,a∴a【題目點撥】考查等差數(shù)列的性質(zhì)、等差中項,考查基本量法求數(shù)列問題.9、D【解題分析】

根據(jù)面,,得到三棱錐的三條側(cè)棱兩兩垂直,以三條側(cè)棱為棱長得到一個長方體,且長方體的各頂點都在該球上,長方體的對角線的長就是該球的直徑,從而得到答案?!绢}目詳解】面,三棱錐的三條側(cè)棱,,兩兩垂直,可以以三條側(cè)棱,,為棱長得到一個長方體,且長方體的各頂點都在該球上,長方體的對角線的長就是該球的直徑,即則該球的半徑為故答案選D【題目點撥】本題考查三棱錐外接球的半徑的求法,本題解題的關(guān)鍵是以三條側(cè)棱為棱長得到一個長方體,三棱錐的外接球,即為該長方體的外接球,利用長方體外接球的直徑為長對角線的長,屬于基礎(chǔ)題。10、B【解題分析】

利用面積公式及可求,再利用同角的三角函數(shù)的基本關(guān)系式可求,最后利用余弦定理可求的值.【題目詳解】因為,故,所以,因為,故,又,由余弦定理可得,故.故選B.【題目點撥】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)點到直線距離公式與圓的垂徑定理求解.【題目詳解】圓的圓心為,半徑為,圓心到直線的距離:,由得,解得.【題目點撥】本題考查直線與圓的應(yīng)用.此題也可聯(lián)立圓與直線方程,消元后用弦長公式求解.12、【解題分析】

先由,根據(jù)余弦定理,求出,再由,結(jié)合余弦定理,求出,再由題意即可得出結(jié)果.【題目詳解】因為,所以,因此;又,由余弦定理可得,所以,因此.故答案為【題目點撥】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于??碱}型.13、【解題分析】

記,則,則可求出,設(shè),,得,,故結(jié)合余弦定理可得,解得的值,即可求,進(jìn)而求的值.【題目詳解】根據(jù)題意,不妨設(shè),,則,因,所以,設(shè),由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【題目點撥】本題主要考查了余弦定理在解三角形中的綜合應(yīng)用以及同角三角函數(shù)的基本關(guān)系式,屬于中檔題.14、(0,1)【解題分析】

畫出函數(shù)f(x)在x∈0,2【題目詳解】解:畫出函數(shù)y=cosx+2|cosx|=3cos以及直線y=k的圖象,如圖所示;由f(x)的圖象與直線y=k有且僅有四個不同的交點,可得0<k<1.故答案為:(0,1).【題目點撥】本題主要考查利用分段函數(shù)及三角函數(shù)的性質(zhì)求參數(shù),數(shù)形結(jié)合是解題的關(guān)鍵.15、【解題分析】

令代入可求得;方程兩邊取倒數(shù),構(gòu)造出等差數(shù)列,即可得答案.【題目詳解】令,則;∵,∴數(shù)列為等差數(shù)列,∴,∴.故答案為:;.【題目點撥】本題考查數(shù)列的遞推關(guān)系求通項,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意兩邊取倒數(shù),構(gòu)造新等差數(shù)列的方法.16、【解題分析】

由已知條件推導(dǎo)出,,由此能求出使前項和成立的最大自然數(shù)的值.【題目詳解】解:等差數(shù)列,首項,,,,.如若不然,,則,而,得,矛盾,故不可能.使前項和成立的最大自然數(shù)為.故答案為:.【題目點撥】本題考查等差數(shù)列的前項和取最大值時的值的求法,是中檔題,解題時要認(rèn)真審題,注意等差數(shù)列的通項公式的合理運用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),頻率分布直方圖見解析;(2).【解題分析】

(1)根據(jù)分布直方圖計算出第二個矩形的面積,乘以可得出的值,再由頻數(shù)之和為得出的值,利用頻數(shù)除以樣本容量得出第四個矩形的面積,并計算出第四個矩形的高,于此可補(bǔ)全頻率分布直方圖;(2)先計算出人中年齡在、內(nèi)的市民人數(shù)分別為、,將年齡在的位市民記為,年齡在的位市民記為、、、,記事件恰有人的年齡在內(nèi),列舉出所有的基本事件,并確定事件所包含的基本事件數(shù),利用古典概型的概率公式可計算出事件的概率.【題目詳解】(1)由頻數(shù)分布表和頻率分布直方圖可知,解得.頻率分布直方圖中年齡在內(nèi)的人數(shù)為人,對應(yīng)的為,所以補(bǔ)全的頻率分布直方圖如下圖所示:(2)由頻數(shù)分布表知,在抽取的人中,年齡在內(nèi)的市民的人數(shù)為,記為,年齡在內(nèi)的市民的人數(shù)為,分別記為、、、.從這人中任取人的所有基本事件為:、、、、、、、、、,共個基本事件.記“恰有人的年齡在內(nèi)”為事件,則所包含的基本事件有個:、、、,所以這人中恰有人的年齡在內(nèi)的概率為.【題目點撥】本題考查頻率分布直方圖和頻率分布表的應(yīng)用,同時也考查了古典概型概率公式計算概率,在列舉基本事件時要遵循不重不漏的基本原則,常用的是列舉法,也可以利用樹狀圖來輔助理解,考查運算求解能力,屬于中等題.18、(I)6人,9人,10人;(II)(i)見解析;(ii).【解題分析】

(I)根據(jù)題中所給的老、中、青員工人數(shù),求得人數(shù)比,利用分層抽樣要求每個個體被抽到的概率是相等的,結(jié)合樣本容量求得結(jié)果;(II)(I)根據(jù)6人中隨機(jī)抽取2人,將所有的結(jié)果一一列出;(ii)根據(jù)題意,找出滿足條件的基本事件,利用公式求得概率.【題目詳解】(I)由已知,老、中、青員工人數(shù)之比為,由于采取分層抽樣的方法從中抽取25位員工,因此應(yīng)從老、中、青員工中分別抽取6人,9人,10人.(II)(i)從已知的6人中隨機(jī)抽取2人的所有可能結(jié)果為,,,,共15種;(ii)由表格知,符合題意的所有可能結(jié)果為,,,,共11種,所以,事件M發(fā)生的概率.【題目點撥】本小題主要考查隨機(jī)抽樣、用列舉法計算隨機(jī)事件所含的基本事件數(shù)、古典概型即其概率計算公式等基本知識,考查運用概率知識解決簡單實際問題的能力.19、(Ⅰ)(Ⅱ)【解題分析】

(Ⅰ)利用平面向量的數(shù)量積的運算法則化簡,進(jìn)而求出向量與的夾角;(Ⅱ)利用,對其化簡,代入數(shù)值,即可求出結(jié)果.【題目詳解】解:(Ⅰ)由得因向量與的夾角為(Ⅱ)【題目點撥】本題考查平面向量的數(shù)量積的應(yīng)用,以及平面向量的夾角以及平面向量的模的求法,考查計算能力.20、(1)(2)【解題分析】

(1)用列舉法列出所有基本事件,得到基本事件的總數(shù)和同學(xué)被選中的,然后用古典概型概率公式可求得;(2)利用對立事件的概率公式即可求得.【題目詳解】解:選兩名代表發(fā)言一共有,,共種情況,其中.被選中的情況是共種.所以被選中的概本為.不妨設(shè)四位同學(xué)為男同學(xué),則沒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論