河南省開封市蘭考縣第三中學2024屆高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
河南省開封市蘭考縣第三中學2024屆高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
河南省開封市蘭考縣第三中學2024屆高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
河南省開封市蘭考縣第三中學2024屆高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
河南省開封市蘭考縣第三中學2024屆高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省開封市蘭考縣第三中學2024屆高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.2.已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為()A. B. C. D.3.已知函數(shù)的圖象過點,且在上單調(diào),同時的圖象向左平移個單位之后與原來的圖象重合,當,且時,,則A. B. C. D.4.在復平面內(nèi),復數(shù)滿足,則的共軛復數(shù)對應(yīng)的點位于A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知一組正數(shù)的平均數(shù)為,方差為,則的平均數(shù)與方差分別為()A. B. C. D.6.在平面直角坐標系中,已知四邊形是平行四邊形,,,則()A. B. C. D.7.下列命題中錯誤的是()A.若,則 B.若,則C.若,則 D.若,則8.甲、乙兩名選手參加歌手大賽時,5名評委打的分數(shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分數(shù)的標準差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定9.某實驗單次成功的概率為0.8,記事件A為“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”,現(xiàn)采用隨機模擬的方法估計事件4的概率:先由計算機給出0~9十個整數(shù)值的隨機數(shù),指定0,1表示單次實驗失敗,2,3,4,5,6,7,8,9表示單次實驗成功,以3個隨機數(shù)為組,代表3次實驗的結(jié)果經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),如下表:752029714985034437863694141469037623804601366959742761428261根據(jù)以上方法及數(shù)據(jù),估計事件A的概率為()A.0.384 B.0.65 C.0.9 D.0.90410.已知集合,則().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列中,,,則數(shù)列通項___________12.函數(shù)的最大值為.13.在等比數(shù)列中,若,則__________.14.從1,2,3,4,5中任意取出兩個不同的數(shù),其和為5的概率為________.15.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的體積為__________.16.在行列式中,元素的代數(shù)余子式的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,求的值.18.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值.19.已知函數(shù).(1)若函數(shù)的周期,且滿足,求及的遞增區(qū)間;(2)若,在上的最小值為,求的最小值.20.已知點,,曲線任意一點滿足.(1)求曲線的方程;(2)設(shè)點,問是否存在過定點的直線與曲線相交于不同兩點,無論直線如何運動,軸都平分,若存在,求出點坐標,若不存在,請說明理由.21.已知數(shù)列滿足,,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變,可判定A的真假;a>b,-1>-2,根據(jù)同向不等式可以相加,可判定B的真假;根據(jù)a-b>0則b-a<0,進行判定C的真假;a的符號不確定,從而選項D不一定成立,從而得到結(jié)論.【題目詳解】∵a,b∈R,并且a>b,∴?a<?b,故A一定正確;a>b,?1>?2,根據(jù)同向不等式可以相加得,a?1>b?2,故B一定正確;a?b>0則b?a<0,所以a?b>b?a,故C一定正確;不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變,不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變,而a的符號不確定,故D不一定正確.故選D.【題目點撥】本題主要考查利用不等式的性質(zhì)判斷不等關(guān)系,屬于基礎(chǔ)題.2、B【解題分析】試題分析:如圖,取中點,連接,因為是中點,則,或其補角就是異面直線所成的角,設(shè)正四面體棱長為1,則,,.故選B.考點:異面直線所成的角.【名師點睛】求異面直線所成的角的關(guān)鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點的選取,選取特殊點時要盡可能地使它與題設(shè)的所有相減條件和解題目標緊密地聯(lián)系起來.如已知直線上的某一點,特別是線段的中點,幾何體的特殊線段.3、A【解題分析】由題設(shè)可知該函數(shù)的周期是,則過點且可得,故,由可得,所以由可得,注意到,故,所以,應(yīng)選答案A點睛:已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求.4、A【解題分析】

把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由共軛復數(shù)的概念得答案.【題目詳解】由z(1﹣i)=2,得z=,∴.則z的共軛復數(shù)對應(yīng)的點的坐標為(1,﹣1),位于第四象限.故選D.【題目點撥】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.5、C【解題分析】

根據(jù)平均數(shù)的性質(zhì)和方差的性質(zhì)即可得到結(jié)果.【題目詳解】根據(jù)平均數(shù)的線性性質(zhì),以及方差的性質(zhì):將一組數(shù)據(jù)每個數(shù)擴大2倍,且加1,則平均數(shù)也是同樣的變化,方差變?yōu)樵瓉淼?倍,故變換后數(shù)據(jù)的平均數(shù)為:;方差為4.故選:C.【題目點撥】本題考查平均數(shù)和方差的性質(zhì),屬基礎(chǔ)題.6、D【解題分析】因為四邊形是平行四邊形,所以,所以,故選D.考點:1、平面向量的加法運算;2、平面向量數(shù)量積的坐標運算.7、D【解題分析】

根據(jù)不等式的性質(zhì)、對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性,對選項逐一分析,由此得出正確選項.【題目詳解】對于A選項,根據(jù)不等式傳遞性可知,A選項命題正確.對于B選項,由于在定義域上為增函數(shù),故B選項正確.對于C選項,由于在定義域上為增函數(shù),故C選項正確.對于D選項,當時,命題錯誤.故選D.【題目點撥】本小題主要考查不等式的性質(zhì),考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.8、C【解題分析】

先求均值,再根據(jù)標準差公式求標準差,最后比較大小.【題目詳解】乙選手分數(shù)的平均數(shù)分別為所以標準差分別為因此s1<s2,選C.【題目點撥】本題考查標準差,考查基本求解能力.9、C【解題分析】

由隨機模擬實驗結(jié)合圖表計算即可得解.【題目詳解】由隨機模擬實驗可得:“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中最多成功1次”共141,601兩組隨機數(shù),則“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”共組隨機數(shù),即事件的概率為,故選.【題目點撥】本題考查了隨機模擬實驗及識圖能力,屬于中檔題.10、B【解題分析】

求解一元二次不等式的解集,化簡集合的表示,最后運用集合交集的定義,結(jié)合數(shù)軸求出.【題目詳解】因為,所以,故本題選B.【題目點撥】本題考查了一元二次不等式的解法,考查了集合交集的運算,正確求解一元二次不等式的解集、運用數(shù)軸是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】分析:在已知遞推式兩邊同除以,可得新數(shù)列是等差數(shù)列,從而由等差數(shù)列通項公式求得,再得.詳解:∵,∴兩邊除以得,,即,∵,∴,∴是以為首項,以為公差的等差數(shù)列,∴,∴.故答案為.點睛:在求數(shù)列公式中,除直接應(yīng)用等差數(shù)列和等比數(shù)列的通項公式外,還有一種常用方法:對遞推式化簡變形,可構(gòu)造出新數(shù)列為等差數(shù)列或等比數(shù)列,再由等差(比)數(shù)列的通項公式求出結(jié)論.這是一種轉(zhuǎn)化與化歸思想,必須掌握.12、【解題分析】略13、80【解題分析】

由即可求出【題目詳解】因為是等比數(shù)列,所以,所以即故答案為:80【題目點撥】本題考查的是等比數(shù)列的性質(zhì),較簡單14、0.2【解題分析】從1,2,3,4,5中任意取兩個不同的數(shù)共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)10種.其中和為5的有(1,4),(2,3)2種.由古典概型概率公式知所求概率為=.15、.【解題分析】

根據(jù)棱錐的結(jié)構(gòu)特點,確定所求的圓柱的高和底面半徑.【題目詳解】由題意四棱錐的底面是邊長為的正方形,側(cè)棱長均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,圓柱的底面半徑為,一個底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【題目點撥】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎(chǔ)題.16、【解題分析】

根據(jù)余子式的定義,要求的代數(shù)余子式的值,這個元素在三階行列式中的位置是第一行第二列,那么化去第一行第二列得到的代數(shù)余子式,解出即可.【題目詳解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代數(shù)余子式為:解這個余子式的值為,故元素的代數(shù)余子式的值是.故答案為:【題目點撥】考查學生會求行列式中元素的代數(shù)余子式,行列式的計算方法,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解題分析】

由即,解得:(因為舍去)或.18、(Ⅰ);(Ⅱ)或.【解題分析】

分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導公式得結(jié)果,(Ⅱ)先根據(jù)三角函數(shù)定義得,再根據(jù)同角三角函數(shù)關(guān)系得,最后根據(jù),利用兩角差的余弦公式求結(jié)果.【題目詳解】詳解:(Ⅰ)由角的終邊過點得,所以.(Ⅱ)由角的終邊過點得,由得.由得,所以或.點睛:三角函數(shù)求值的兩種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當變換已知式,求得另外函數(shù)式的值,以備應(yīng)用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達到解題的目的.19、(1),;(2)2.【解題分析】

(1)由函數(shù)的性質(zhì)知,關(guān)于直線對稱,又函數(shù)的周期,兩個條件兩個未知數(shù),列兩個方程,所以可以求出,進而得到的解析式,求出的遞增區(qū)間;(2)求出的所有解,再解不等式,即可求出的最小值.【題目詳解】(1),由知,∴對稱軸∴,又,,由,得,函數(shù)遞增區(qū)間為;(2)由于,在上的最小值為,所以,即,所以,所以.【題目點撥】本題主要考查三角函數(shù)解析式、單調(diào)區(qū)間以及最值的求法,特別注意用代入法求單調(diào)區(qū)間時,要考慮復合函數(shù)的單調(diào)性,以免求錯.20、(1);(2)【解題分析】

(1)設(shè),再根據(jù)化簡求解方程即可.(2)設(shè)過定點的直線方程為,根據(jù)軸平分可得.再聯(lián)立直線與圓的方程,化簡利用韋達定理求解中參數(shù)的關(guān)系,進而求得定點即可.【題目詳解】(1)設(shè),因為,故,即,整理可得.(2)當直線與軸垂直,且在圓內(nèi)時,易得關(guān)于軸對稱,故必有軸平分.當直線斜率存在時,設(shè)過定點的直線方程為.設(shè).聯(lián)立,.因為無論直線如何運動,軸都平分,故,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論