黑龍江哈爾濱市省實(shí)驗(yàn)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
黑龍江哈爾濱市省實(shí)驗(yàn)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
黑龍江哈爾濱市省實(shí)驗(yàn)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
黑龍江哈爾濱市省實(shí)驗(yàn)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
黑龍江哈爾濱市省實(shí)驗(yàn)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江哈爾濱市省實(shí)驗(yàn)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,則一定有()A. B. C. D.2.設(shè)點(diǎn)是函數(shù)圖象士的任意一點(diǎn),點(diǎn)滿足,則的最小值為()A. B. C. D.3.不等式的解集是:A. B.C. D.4.設(shè),,,則()A. B. C. D.5.已知函數(shù),若,,則()A. B.2 C. D.6.將函數(shù)的圖象向左平移個(gè)單位得到函數(shù)的圖象,則的值為()A. B. C. D.7.在數(shù)列中,,則數(shù)列的前n項(xiàng)和的最大值是()A.136 B.140 C.144 D.1488.已知等差數(shù)列的前項(xiàng)和,若,則()A.25 B.39 C.45 D.549.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2aA.145 B.114 C.810.一個(gè)四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),數(shù)列滿足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為______;12.已知函數(shù)(,)的部分圖像如圖所示,則函數(shù)解析式為_______.13.已知直線過點(diǎn),,則直線的傾斜角為______.14.已知向量,,則與的夾角等于_______.15.已知a,b為常數(shù),若,則______;16.已知向量,,且,點(diǎn)在圓上,則等于.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角A,B,C的對(duì)邊分別為a,b,c,若,.(1)求角A的大??;(2)若,求的周長.18.已知對(duì)任意,恒成立(其中),求的最大值.19.如圖,某快遞小哥從地出發(fā),沿小路以平均速度為20公里小時(shí)送快件到處,已知公里,,是等腰三角形,.(1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車的平均速度為60公里小時(shí),問,汽車能否先到達(dá)處?20.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),,,三點(diǎn)滿足.(1)求值;(2)已知若的最小值為,求的最大值.21.已知數(shù)列的前項(xiàng)和為,且2,,成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】

由題,可得,且,即,整理后即可得到作出判斷【題目詳解】由題可得,則,因?yàn)?則,,則有,所以,即故選C【題目點(diǎn)撥】本題考查不等式的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題2、B【解題分析】

函數(shù)表示圓位于x軸下面的部分。利用點(diǎn)到直線的距離公式,求出最小值?!绢}目詳解】函數(shù)化簡得。圓心坐標(biāo),半徑為2.所以【題目點(diǎn)撥】本題考查點(diǎn)到直線的距離公式,屬于基礎(chǔ)題。3、C【解題分析】

把不等式轉(zhuǎn)化為不等式,即可求解,得到答案.【題目詳解】由題意,不等式,等價(jià)于,解得,即不等式的解集為,故選C.【題目點(diǎn)撥】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、B【解題分析】

根據(jù)與特殊點(diǎn)的比較可得因?yàn)?,,從而得到,得出答案.【題目詳解】解:因?yàn)?,,所以.故選:B【題目點(diǎn)撥】本題主要考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的問題,要熟記一些特殊點(diǎn),如,,.5、C【解題分析】

由函數(shù)的解析式,求得,,進(jìn)而得到,,結(jié)合兩角差的余弦公式和三角函數(shù)的基本關(guān)系式,即可求解.【題目詳解】由題意,函數(shù),令,即,即,所以,令,即,即,所以,又因?yàn)?,,即,,所以,,即,,平方可得,,兩式相加可得,所?故選:C.【題目點(diǎn)撥】本題主要考查了兩角和與差的余弦公式,三角函數(shù)的基本關(guān)系式的應(yīng)用,以及函數(shù)的解析式的應(yīng)用,其中解答中合理應(yīng)用三角函數(shù)的恒等變換的公式進(jìn)行運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.6、A【解題分析】,向左平移個(gè)單位得到函數(shù)=,故7、C【解題分析】

可得數(shù)列為等差數(shù)列且前8項(xiàng)為正數(shù),第9項(xiàng)為0,從第10項(xiàng)開始為負(fù)數(shù),可得前8或9項(xiàng)和最大,由求和公式計(jì)算可得.【題目詳解】解:∵在數(shù)列中,,

,即數(shù)列為公差為?4的等差數(shù)列,

令可得,

∴遞減的等差數(shù)列中前8項(xiàng)為正數(shù),第9項(xiàng)為0,從第10項(xiàng)開始為負(fù)數(shù),

∴數(shù)列的前8或9項(xiàng)和最大,

由求和公式可得

故選:C.【題目點(diǎn)撥】本題考查等差數(shù)列的求和公式和等差數(shù)列的判定,屬基礎(chǔ)題.8、A【解題分析】

設(shè)等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項(xiàng)和公式即可求出.【題目詳解】解:設(shè)等差數(shù)列的公差為,則由,得:,,,故選:A.【題目點(diǎn)撥】本題主要考查等差數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式,屬于基礎(chǔ)題.9、B【解題分析】

由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【題目詳解】因?yàn)镾n=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當(dāng)且僅當(dāng)nm=9mn時(shí)取等號(hào),此時(shí)∵m,n取整數(shù),∴均值不等式等號(hào)條件取不到,則1m驗(yàn)證可得,當(dāng)m=2,n=4時(shí),1m+9【題目點(diǎn)撥】本題主要考查等比數(shù)列的定義與通項(xiàng)公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗(yàn)證等號(hào)能否成立(主要注意兩點(diǎn),一是相等時(shí)參數(shù)是否在定義域內(nèi),二是多次用≥或≤時(shí)等號(hào)能否同時(shí)成立).10、B【解題分析】

試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點(diǎn):1.三視圖;2.多面體的表面積與體積.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出與的關(guān)系,然后考慮將的前項(xiàng)按要求排列,再根據(jù)項(xiàng)的序號(hào)計(jì)算出滿足的值即可.【題目詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當(dāng)為奇數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)椋Y(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為偶數(shù)時(shí),;用數(shù)學(xué)歸納法證明:任意偶數(shù)項(xiàng)大于相鄰的奇數(shù)項(xiàng)即證:當(dāng)為奇數(shù),,當(dāng)時(shí),符合,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以,所以,所以時(shí)成立,所以當(dāng)為奇數(shù)時(shí),,據(jù)此可知:,當(dāng)時(shí),若,則有,此時(shí)無解;當(dāng)時(shí),此時(shí)的下標(biāo)成首項(xiàng)為公差為的等差數(shù)列,通項(xiàng)即為,若,所以,所以.故答案為:.【題目點(diǎn)撥】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時(shí),要注意到數(shù)列作為特殊的函數(shù),其定義域?yàn)椋?2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.12、y=sin(2x+).【解題分析】

由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值答案可求【題目詳解】根據(jù)函數(shù)y=sin(ωx+φ)(ω>0,0<φ)的部分圖象,可得A=1,?,∴ω=2,再結(jié)合五點(diǎn)法作圖可得2?φ=π,∴φ,則函數(shù)解析式為y=sin(2x+)故答案為:y=sin(2x+).【題目點(diǎn)撥】本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值難度中檔.13、【解題分析】

根據(jù)兩點(diǎn)求斜率的公式求得直線的斜率,然后求得直線的傾斜角.【題目詳解】依題意,故直線的傾斜角為.【題目點(diǎn)撥】本小題主要考查兩點(diǎn)求直線斜率的公式,考查直線斜率和傾斜角的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.14、【解題分析】

由已知向量的坐標(biāo)求得兩向量的模及數(shù)量積,代入數(shù)量積求夾角公式得答案.【題目詳解】∵(﹣1,),(,﹣1),∴,,則cos,∴與的夾角等于.故答案為:.【題目點(diǎn)撥】本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是基礎(chǔ)題.15、2【解題分析】

根據(jù)極限存在首先判斷出的值,然后根據(jù)極限的值計(jì)算出的值,由此可計(jì)算出的值.【題目詳解】因?yàn)?,所以,又因?yàn)?,所以,所?故答案為:.【題目點(diǎn)撥】本題考查根據(jù)極限的值求解參數(shù),難度較易.16、【解題分析】試題分析:因?yàn)榍以趫A上,所以,解得,所以.考點(diǎn):向量運(yùn)算.【思路點(diǎn)晴】平面向量的數(shù)量積計(jì)算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運(yùn)算公式,涉及幾何圖形的問題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】

(1)根據(jù)三角形面積公式,結(jié)合平面向量數(shù)量積定義,分別表示出,聯(lián)立即可求得,進(jìn)而得的值.(2)由,結(jié)合余弦定理即可表示出,由(1)可得.即可聯(lián)立表示出,進(jìn)而求得周長.【題目詳解】(1)因?yàn)?所以,則而,可得,所以即化簡可得所以;(2)因?yàn)?所以由余弦定理可得,即,由(1)知,則,所以,所以的周長為.【題目點(diǎn)撥】本題考查了三角形面積公式的應(yīng)用,余弦定理解三角形,平面向量數(shù)量積的定義及應(yīng)用,屬于中檔題.18、的最大值為.【解題分析】試題分析:利用二倍角公式,利用換元法,將原不等式轉(zhuǎn)化為二次不等式在區(qū)間上恒成立,利用二次函數(shù)的零點(diǎn)分布進(jìn)行討論,從而得出的最大值,但是在對(duì)時(shí)的情況下,主要對(duì)二次函數(shù)的對(duì)稱軸是否在區(qū)間進(jìn)行分類討論,再將問題轉(zhuǎn)化為的條件下,求的最大值,試題解析:由題意知,令,,則當(dāng),恒成立,開口向上,①當(dāng)時(shí),,不滿足,恒成立,②當(dāng)時(shí),則必有(1)當(dāng)對(duì)稱軸時(shí),即,也即時(shí),有,則,,則,當(dāng),時(shí),.當(dāng)對(duì)稱軸時(shí),即,也即時(shí),則必有,即,又由(1)知,則由于,故只需成立即可,問題轉(zhuǎn)化為的條件下,求的最大值,然后利用代數(shù)式的結(jié)構(gòu)特點(diǎn)或從題干中的式子出發(fā),分別利用三角換元法、導(dǎo)數(shù)法以及柯西不等式法來求的最大值.法一:(三角換元)把條件配方得:,,所以,;法二:(導(dǎo)數(shù))令則即求函數(shù)的導(dǎo)數(shù),橢圓的上半部分;法三:(柯西不等式)由柯西不等式可知:,當(dāng)且僅當(dāng),即及時(shí)等號(hào)成立.即當(dāng)時(shí),最大值為2.綜上可知.考點(diǎn):1.二倍角;2.換元法;3.二次不等式的恒成立問題;4.導(dǎo)數(shù);5.柯西不等式19、(1)快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)汽車能先到達(dá)處.【解題分析】試題分析:(1)由題意結(jié)合圖形,根據(jù)正弦定理可得,,求得的長,又,可求出快遞小哥從地到地的路程,再計(jì)算小哥到達(dá)地的時(shí)間,從而問題可得解;(2)由題意,可根據(jù)余弦定理分別算出與的長,計(jì)算汽車行馳的路程,從而求出汽車到達(dá)地所用的時(shí)間,計(jì)算其與步小哥所用時(shí)間相差是否有15分鐘,從而問題可得解.試題解析:(1)(公里),中,由,得(公里)于是,由知,快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)在中,由,得(公里),在中,,由,得(公里),-由(分鐘)知,汽車能先到達(dá)處.點(diǎn)睛:此題主要考查了解三角形中正弦定理、余弦定理在實(shí)際生活中的應(yīng)用,以及關(guān)于路程問題的求解運(yùn)算等方面的知識(shí)與技能,屬于中低檔題型,也是??碱}型.在此類問題中,總是正弦定理、余弦定理,以及相關(guān)聯(lián)的三角函數(shù)的知識(shí),所以根據(jù)題目條件、圖形進(jìn)行挖掘,找到與問題銜接處,從而尋找到問題的解決方案.20、(1)(2)1【解題分析】

(1)由,得,化簡得,即可得到答案;(2)化簡函數(shù),對(duì)實(shí)數(shù)分類討論求得函數(shù)的最小值,得到關(guān)于的分段函數(shù),進(jìn)而求得函數(shù)的最大值.【題目詳解】(1)由題意知三點(diǎn)滿足,可得,所以,即即,則,所以.(2)由題意,函數(shù)因?yàn)椋?,?dāng)時(shí),取得最小值,當(dāng)時(shí),當(dāng)時(shí),取得最小值,當(dāng)時(shí),當(dāng)時(shí),取得最小值,綜上所述,,可得函數(shù)的最大值為1,即的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論