




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1TheChemicalCompositionoftheSolarSystemandtheEarthTwosuggestionsExpertisecomesfrommakingallpossiblemistakes(NielsBohr)Nothingcanbeobtainedingeochemistrywithoutcarefulanalyticalwork(C.J.Allegre)FurtherreadingsW.M.White,Geochemistry.Aon-linetextbook.S.R.TaylorandS.M.,1995.TheContinentalCrust:ItsCompositionandEvolution.Blackwell,Oxford.W.F.McDonoughandS.Sun,TheCompositionoftheEarth,ChemicalGeology,120:223-253.GeochemicalEarthReferenceModel(GERM)
www.EarthRWhydowestudyelementabundances?FundamentalforanygeochemicalstudiesConfusingtermsAbundance:foralargesystem,e.g.,Cosmos,Sun,Moon,Earth,crust,regionalcrustContent/concentration:forasmallersystem,e.g.,rocks,minerals,naturalwater.Part1TheSolar/CosmicsystemSourcesforstudiesMeteoriteSun’sPhotosphereCosmicraysEarthandmoonVariousmeteoritesizesStonymeteoriteIronmeteoriteAhnighitometeorite南極洲
IvunameteoritefragmentMeteoriteEsquel
Pallasite(石鐵隕石)FoundinEsquel,ArgentinaWhereisthebestplacetofindmeteoritesonEarth?Firn
粒雪
Katabatic
下降的ablation[?b‘lei??n]切除,消除nunatak[’n?n?t?k]冰原島峰Classificationofmeteoritesaccordingtotextureandchemicalcomposition(White,2001)Achondrite
不含球粒隕石
aubrite:頑火無球粒隕石15Aside:MeteoriteClassificationLifeonMars!RelativeabundanceofmajortypesofmeteoritefallsCharacteristicsofchondritegroupsCarbonaceouschondritesarethemostvolatile-richandthemostprimitive.IvunameteoriteA0.7-kilogramcarbonaceouschondrite(typeCI1,seebelow)whichlandednearIvuna,Tanzania,onDecember16,1938.Itwassubsequentlysplitintoanumberofsamples.
Ivunawasoneoffourmeteorites,includingtheOrgueilmeteorite,inwhichBartholomewNagyandGeorgeClaus1claimedtohavefoundevidenceofprimitiveextraterrestrialfossils.Subsequentanalysisledtothisclaimbeingdiscredited.However,in2001,investigationbyateamfromtheScrippsInstitutionofOceanography,theLeidenObservatoryintheNetherlands,andtheNASAAmesResearchCenter,2showedthepresenceinIvunaoftwosimpleaminoacids,glycineandbeta-alanine,andlinkedIvunawithalikelyorigininthenucleusofacomet.Formoreonthisdiscoveryanditsimplications,seetheentryfortheOrgueilmeteorite.
IvunaisoneofonlynineknownmeteoritesthatareclassifiedastypeCI1carbonaceouschondrites.Thesemeteoritescontain“heavyelements”(i.e.,elementsotherthanhydrogenandhelium)innearlythesameabundancesasintheSun,whichmeansthattheyareessentiallyunalteredsincetheywereformedataboutthesametimeasthesolarsystemitself,some4.6billionyearsago.ThedesignationCI1indicatesthatIvunaunderwentahighdegreeofaqueousalteration(orchemicalchangeduetothepresenceofwater).Thisalterationtookplaceintheparentbodyofthemeteoriteatlowtemperatures,probablyintherangeof20–50°C,andinawater-richenvironment.Bycontrast,ordinarychondriteshaveexperiencedthermalmetamorphismunderdryconditionsinatemperaturerangeof600–900°C.
CI1typemeteoritesareverydark,becauseoftheirhighcarboncontent,containahighproportionofofiron-richclaysorphyllosilicates(層狀硅酸鹽),andhaveveryfinegrainsize.InIvuna,thereisalsoacompleteabsenceofchondrules,owingtothefactthattheyhaveallbeenalteredtoclaysandironoxides.
WhatdoestheclassificationCI1mean?
CI1chondriteIvuna–upto20wt.%waterCondensation(冷凝)sequenceofagaswithasolarcompositionCondesationsequenceofmineralsperovskite[p?'r?vzkait]n.鈣鈦礦corundum[k?'r?nd?m]n.金剛砂,剛玉troilite['tr?uilait,'tr?il-]n.隕硫鐵Goldschmidt’sclassificationofelementslithophile['liθ?ufail]n.親石元素lithophile['liθ?ufail]n.親石元素siderophilen.親鐵元素chalcophile['k?lk?,fail]adj.親銅的,親硫的atmophile:親氣元素Classificationofelements
(McDonoughandSun,1995)refractory[ri‘fr?kt?ri]adj.難熔的atmophile:親氣元素ClassificationofelementsaccordingtovolatilityThereismuchinterestinhighTcomponent,i.e.,theso-calledRefractoryInclusions(RI)orCa-Alinclusions(CAI),becausetheircompositionrepresentsthatofthefirstcondensatesfromahighTgas.Ca-AlinclusionCartonillustratingtheprocessinvolvedinformationofchondritesandtheircomponentsinterstellar[,int?'stel?]adj.星際的ChondriticbodyDifferentiatedbodyTypesofStonyMeteoritesChondrites–HeatedbuthavenotmeltedTendtocontainchondrulesAggregatesofhigh-andlow-temperaturecomponentsAchondrites–HeatingtothepointofmeltingTendtodifferentiateWherematerialsegregatesduetodensitachondrite[ei'k?ndrait]n.不含球粒隕石Abundancesofelementsinsun’sphotospherevstheirabundancesinCIchondrites(White,2001)ComparisonofelementabundancesinsolarphotosphereandCIcarbonaceouschondrites(TaylorandMcLennan,1995)SolarsystemabundancesofelementsrelativetoSi=106CharacteristicofelementabundancesofthesolarsystemHandHeaccountsfor98%inmass.Exponentialdecreaseinabundanceforelementswithatomicnumber<45.Elementswithevenmassshowsignificantlyhigherabundancesthantheneighboringelementswithoddmass.HeexhibitanabnomouslyhighabundancecomparedtotheneighboringLi,BeandB.OandFeshowapeak.Isotopeswithatomicweightbeingfactorof4havehighabundance.4He(Z=2,N=2),16O(Z=8,N=8),
40Ca(Z=20,N=20).Even-oddmasseffect5758596062636465666768697071SequenceofdecreasingelementabundancesinthesolarsystemHHeOCN,NeMg,SiFeS1010to109107106105Neocleo(核)synthesisTheBigBangStellarstructure(恒星結(jié)構(gòu))
attheonsetofsupernova(超新星)stage(White,2001)TheE-process(Siburning)TheS-process(neutroncapture)Ther-process(Rapidneutroncapture)PrinciplemechanismforformingheavierisotopesThep-process(Protoncapture)ResponsibleforthelightestisotopesofagivenelementTher-processpathPart2TheMoonRepresentativecompositionsoflunarrocks(月巖)anorthosite[?‘n?:θ?sait][巖]
斜長巖tholeiite['θ?uli:ait]n.[巖]拉斑玄武巖ComparisonofthecompositionoftheMoonandtheEarthHighlightsof
lunar
GeochronologyPart3TheEarthVolumesandmassesoftheEarth’sshellsTheEarth’sInteriorMantle:Peridotite(ultramafic)Upper
to410km(olivine?spinel)LowVelocityLayer
60-220kmTransitionZone
asvelocityincreases~rapidly660spinel?
perovskite(鈣鈦礦)-typeSiIV
?
SiVILowerMantle
hasmoregradual velocityincreaseFigure1-2.MajorsubdivisionsoftheEarth.Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.TheEarth’sInteriorCore:Fe-NimetallicalloyOuterCore
isliquidNoS-wavesInnerCore
issolidFigure1-2.MajorsubdivisionsoftheEarth.Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.Figure1-3.VariationinPandSwavevelocitieswithdepth.CompositionalsubdivisionsoftheEarthareontheleft,rheologicalsubdivisionsontheright.AfterKeareyandVine(1990),GlobalTectonics.?BlackwellScientific.Oxford.
Part3-1ThemantleMethodsofstudiesMantlexenolithsentrainedbyvolcanicrocksMassifperidotite:ExhumedmantleslabMantle-derivedvolcanicrocksExperimentsathighP-TSeismicanddensitypropertiesMantleRockTypesRockNamesPeridotite(橄欖巖):ultramaficrockcomposedofolivine,2pyroxenes(opx-cpx)andAl-phase(i.e.,plagioclase,spinel,garnet,withthespecificphasebeingafunctionofpressure,0-10,10-25,>25Kbrespectively),includes:lherzolite(二輝橄欖巖),harzburgite(方輝橄欖巖),dunite(純橄巖)
Eclogite(榴輝巖):mafic(i.e.,basaltic)rockcomposedofNa-richclinopyroxeneandgarnetPyroxenite(輝石巖):mafictoultramaficrock,dominantlycomposedofpyroxene,oftencontaininganAl-phase(e.g.,plagioclase,spinel,garnet)
Non-RockNames
PrimitiveMantle/SilicateEarth:modelcompositionforthecrust+mantle.Pyrolite(地幔巖):modelcompositionfortheprimitivemantle,namederivedfrompyroxene-olivine-ite.(Ringwood,1963)Piclogite(苦橄巖):modelcompositionforthemantle,namederivedfrompicritic-eclogite(picrite=olivine-richbasalt).Lherzolite(二輝橄欖巖):AtypeofperidotitewithOlivine+Opx+CpxOlivineClinopyroxeneOrthopyroxeneLherzoliteHarzburgiteWehrliteWebsteriteOrthopyroxeniteClinopyroxeniteOlivineWebsteritePeridotitesPyroxenites90401010DuniteFigure2-2CAfterIUGSMantlerockmineralassemblageSimple:4or5phasesOlivine(Ol)Orthopyroxene(OPX)Clinopyroxene(CPX)Plagioclase(Pl)Spinel(Sp)Garnet(Gt)CompositionofrocksPyroliteharzburgitelherzoliteeclogiteSiO245464450Al2O34.51.22.216FeO8.07.38.210MgO3844418CaO3.60.92.210*Mg#89.491.589.958.8*densityr3.3853.3463.3763.970olivine566265--orthopyx183021--clinopyx102850garnet146650Modalandphysicalpropertyforlithosphericmantleofdifferentages
(AfterO’Reillyetal.,2001)
MantlePhaseDiagramsPhasediagramforaluminous4-phaselherzolite:Plagioclaseshallow(<50km)Spinel50-80kmGarnet80-400kmSi?VIcoord.>400kmAl-phase=Figure10-2
Phasediagramofaluminouslherzolitewithmeltinginterval(gray),sub-solidusreactions,andgeothermalgradient.AfterWyllie,P.J.(1981).Geol.Rundsch.70,128-153.
MantlephasediagramPhaseassemblagesand1atmdensityMeltingofMantleMelt:BasaltResidue:Peridotite1510500.00.20.40.60.8Wt.%Al2O3Wt.%TiO2DuniteHarzburgiteLherzoliteTholeiiticbasaltPartialMeltingResiduumLherzoliteisprobablyfertileunalteredmantleDunite(純橄巖)andharzburgite(方輝橄欖巖)
arerefractoryresiduumafterbasalthasbeenextractedbypartialmeltingFigure10-1BrownandMussett,A.E.(1993),TheInaccessibleEarth:AnIntegratedViewofItsStructureandComposition.Chapman&Hall/Kluwer.Howdoesthemantlemelt??1)IncreasethetemperatureFigure10-3.Meltingbyraisingthetemperature.
2)LowerthepressureAdiabatic(絕熱的)
riseofmantlewithnoconductiveheatlossDecompressionmeltingcouldmeltatleast30%Figure10-4.Meltingby(adiabatic)pressurereduction.Meltingbeginswhentheadiabatcrossesthesolidusandtraversestheshadedmeltinginterval.Dashedlinesrepresentapproximate%melting.
3)Addvolatiles(especiallyH2O)Figure10-4.DryperidotitesoliduscomparedtoseveralexperimentsonH2O-saturatedperidotites.Experimentsonmeltingenrichedvs.depletedmantlesamples:Tholeiite(拉斑玄武巖)easilycreatedby10-30%PMMoresilicasaturatedatlowerPGradestowardalkalicathigherP1.DepletedMantleFigure10-17a.Resultsofpartialmeltingexperimentsondepletedlherzolites.Dashedlinesarecontoursrepresentingpercentpartialmeltproduced.Stronglycurvedlinesarecontoursofthenormativeolivinecontentofthemelt.“Opxout”and“Cpxout”representthedegreeofmeltingatwhichthesephasesarecompletelyconsumedinthemelt.AfterJaquesandGreen(1980).
Contrib.Mineral.Petrol.,73,287-310.
Experimentsonmeltingenrichedvs.depletedmantlesamples:TholeiitesextendtohigherPthanforDMAlkalinebasaltfieldathigherPyetAndlower%PM2.EnrichedMantleFigure10-17b.Resultsofpartialmeltingexperimentsonfertilelherzolites.Dashedlinesarecontoursrepresentingpercentpartialmeltproduced.Stronglycurvedlinesarecontoursofthenormativeolivinecontentofthemelt.“Opxout”and“Cpxout”representthedegreeofmeltingatwhichthesephasesarecompletelyconsumedinthemelt.Theshadedarearepresentstheconditionsrequiredforthegenerationofalkalinebasalticmagmas.AfterJaquesandGreen(1980).
Contrib.Mineral.Petrol.,73,287-310.
MeltingofmantleT,PCaO-Al2O3plotshowingtherangeofmantlecompositionofdifferentages
(O’Reillyetal.,2001)
DEPLETIONLherzolitefromHannuoba,NorthChinaCratonDeepestmantlesamplesfromtransitionzone:
Majorite-BearingXenolithsfromMalaita,OntongJavaOceanicPlateau-9.5GPa(260km)to22GPa(570km).
Collersonetal.,2000,Science,288:1215-1223MantlephasediagramCommonlherzolitexenolithscomefromadepthof50-80km:lithospherePhasediagramforaluminous4-phaselherzolite:Plagioclaseshallow(<50km)Spinel50-80kmGarnet80-400kmSi?VIcoord.>400kmAl-phase=Figure10-2
Phasediagramofaluminouslherzolitewithmeltinginterval(gray),sub-solidusreactions,andgeothermalgradient.AfterWyllie,P.J.(1981).Geol.Rundsch.70,128-153.
StructureoflithosphereNyblade,2001LithosphereevolutionineasternNorthChinacraton
(AfterO’Reillyetal.,2001)
EstimationofPrimitiveMantleCompositionMantlemodelcirca1975Figure10-16a
AfterBasalticVolcanismStudyProject(1981).LunarandPlanetaryInstitute.NewermantlemodelUpperdepletedmantle=MORB+crustsourcesLowerundepleted&enrichedOIBsourceFigure10-16b
AfterBasalticVolcanismStudyProject(1981).LunarandPlanetaryInstitute.PrimitivevsmetasomatismPrimitive:FlatREEMetasomatism:LREEenrichedREEdistributionofperidotiteshowingeffectofmantlemetasomatismContinental
CrustMORBGarnet
harzburgiteSpinel
lherzolitePrimitive
Mantle10210110-1100LaCePrNdSmEuGdTbDyHoErTmYbLuChondritenormalizationCriteriaforestimatingPrimitiveMantleCompositionShouldhaverefractorylithophileelementratiosthataresimilartoCIchondrite.VariationswithMgOinperidotite(橄欖巖)Constantrefractory
elementratiosinperidotites(橄欖巖)Elementalratiosinchondriticmeteorites
(McDonoughandSun,1995)Variationofrefractorylithophileelementratiosinperidotites
(McDonoughandSun,1995)Estimatingrefractory
lithophileelements
inbulksilicateEarth
(McDonoughandSun,1995)EstimatesofSilicateEarth
-MajorelementsEstimatesofSilicateEarth
-TraceelementsPart3-2TheCoreandBulkEarthTheEarth’sInteriorCore:Fe-NimetallicalloyOuterCore
isliquidNoS-wavesInnerCore
issolidFigure1-2.MajorsubdivisionsoftheEarth.Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.CompositionoftheCorePoorlyconstrainedbeyonditsmajorconstituents(i.e.,anFe-Nialloy).Presenceof5-15%oflightelement(s)(S,O,Si).ThedominantdepositoryofsiderophileelementsintheEarth.LimitsonthecompositionsofthecoreandbulkEarth
(McDonough&Sun,1995)Liquidsilicate-liquidmetalpartitioncoefficientsComparisonofelementdistributionsintheEarthandcarbonaceouschondritesTheEarthismorestronglydepletedinvolatileelementsFigure1-5.Relativeatomicabundancesofthesevenmostcommonelementsthatcomprise97%oftheEarth'smass.AnIntroductiontoIgneousandMetamorphicPetrology,byJohnWinter,PrenticeHall.Part3-3TheOceaniccrustTheEarth’sCrustOceaniccrustThin:10kmRelativelyuniformstratigraphy =ophiolitesuite:
Sedimentspillowbasaltsheeteddikesmoremassivegabbroultramafic(mantle)ContinentalCrustThicker:20-90kmaverage~35kmHighlyvariablecompositionAverage~granodioriteMethodsofstudyOphiolite(蛇綠巖)OceandrillingSeismicstudiesStructureofoceaniccrustPlateTectonics–IgneousGenesis
1.
Mid-oceanRidges2.
IntracontinentalRifts3.IslandArcs4.
ActiveContinental Margins
5.
Back-arcBasins6.
OceanIslandBasalts7.
MiscellaneousIntra- ContinentalActivitykimberlites,carbonatites,anorthosites...CompositionoftheOceanicCrust(TaylorandMcLennan,1995)ImportanceofDeterminingCrustalCompositionBasicconstraintsonevolutionoftheEarth.MostaccessiblepartoftheEarthandthebestknown.Placeforformationofmostoforedeposits.Importantdepositoryforhighlyincompatibleelements(U,K,Cs).Essentialforenvironmentalstudiesandgeochemicalexploration.StudyofthecompositionofthecontinentalcrustcanbetracedbacktoearlieststageofgeochemicalstudiesF.M.Clarke,1889F.M.ClarkeandH.S.Washington,1924V.M.Goldschmidt,1933,whoisregardedasthefatherofmoderngeochemistry.S.R.Taylor,1994D.M.Shaw,1967S.R.TaylorandS.M.McLennan,1985K.H.Wedepohl,1992WhatistheContinentalCrust?ExtendsverticallyfromthesurfacetotheMohorovicicdiscontinuity,ajumpincompressionalwaveVpspeedsfrom~7km/sto~8km/sthatisinterpretedtomarkthecrust-mantleboundary.Stratificationinseismicvelocityandthusrocktypeandchemicalcomposition.Lateralandverticallyheterogeneousandgreatdiversityinrocktype.Structureandcompositionalmodelofthecontinentalcrust
(Wedepohl,1995)MetamorphicFaciesFig.25-2.
Temperature-pressurediagramshowingthegenerallyacceptedlimitsofthevariousfaciesusedinthistext.Boundariesareapproximateandgradational.The“typical”oraveragecontinentalgeothermisfromBrownandMussett(1993).Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.UppercrustMiddleCrustLowerCrustPart3-4-1TheUpperContinentalCrust:themostaccessiblepartoftheEarthMethodsofStudiesLarge-scaleregionalsampling(e.g.,theCanadianShield)Usingfine-grainedclasticsedimentsExamples:TheCanadianShieldandEasternChina.Themostreliablemethodforuppercrustalcompositionestimation.Theonlymethodformajorelementcompositionstudies.Expensiveandtime-consuming.Notpertainto(適合)thestudyofuppercrustalcompositioninthegeologicalhistory.Large-scaleregionalsamplingXRFX-rayfluorescenceX射線熒光INAAInstrumentalNeutronAtivationAnalysisFine-GrainedClasticSedimentsasNaturalSamplingoftheExposedUpperContinentalCrustShale,mudstone,siltstone,graywackgraywacke['ɡrei,w?k?]n.雜砂巖;硬砂巖(等于greywacke),tillite(冰磧巖),andloess(黃土).Simpleandmuchlessexpensive.Theonlywayforstudyinguppercrustalcompositioningeologicalhistory.Unsuitabletoprovidingthemajorelementcomposition.LimitedtoREE,Y,Th,Sc,Co.Geologicalinfluencesonsedimentaryrockcomposition-SolubilityWater-uppercrustpartitioncoefficient(分配系數(shù)):
Ky=Naturalwater/UppercrustSeawaterresidencetime
y:timeforreplacementofseawaterelementconcentration.
y=My/Fy
whereMyisthemassofelementyintheoceansandFyistheannualmeanfluxofelementythroughtheoceanreservoir.WeatheringCa,NaandSrarelostK,Rb,CsandBaareretained.Al,Ga,HSFE(Ti,Zr,Hf,Ta,Th)andREE,Y,Scareimmobile.CIA:ChemicalIndexofAlterationCIA=Al2O3/(Al2O3+CaO*+Na2O+K2O)
inmolecularproportionPlagioclaseisthedominantphaseinthecontinentalcrustsubjectedtoweathering.Pleistocene['plaist?usi:n]n.更新世;更新世巖Till冰磧beidellite[bai'delait]n.貝德石;鋁膨潤石ErosionandtransportationThesand-sizeeffect.Quartzandheavyminerals(zircon鋯石,rutile金紅石,magnetite磁鐵礦,chromite鉻鐵礦)areenrichedinsandstone.DiagenesisSensitivetoredox
氧化還原反應(yīng)
conditionsFeandMnaresolubleinanoxic(缺氧的)
conditions.Fe,Cu,Mo,Pb,Zn,V,Ni,S,Careclearlyenrichedinanoxicsedimentsduetoincorporationinsulphidesand/orabsorptiononorganiccompounds.Uisenrichedalsoinanoxicsedimentsduetoreductionofsoluble6+Utoinsoluble4+U.MetamorphismPoorlyunderstood.LiandPbmayincrease.MostelementsandparticularlyREE,Y,Th,HFSE,CrandScareimmobile.SedimentaryrocksascrustalsamplesInsolubleelements(log
4;Ksw
-4)arelikelytobetransferredalmostquantitativelyintoclasticsedimentsandgivethebestinformationregardingthesource-exposeduppercrust.REEinfine-grainedsedimentsprovidequantitativeinfoontheuppercrustcompositionQuantitativelytransferredintofine-grainedclasticsedimentsREEcomparisonof
shalesanduppercrustConstantelement(常量元素)ratiosintheuppercrustEstimationofuppercrustalcompositionMajorelements:
large-scalesamplingTraceelements:
large-scalesampling
fine-grainedclasticsediments
usingREEandtheirratiostootherelementsVariousuppercrustalmajorelementestimates
Taylor&McLennanShawetal.WedepohlCondieGaoetal.Rudnick&Gao
198519671995199319982002SiO26664.9364.9366.2165.4665.84TiO20.50.520.520.550.650.60Al2O315.214.6314.6314.9613.6514.31FeOT4.503.973.974.705.134.92MnO0.070.0680.070.10.10MgO2.22.242.242.422.522.47CaO4.24.124.123.63.313.46Na2O3.93.463.463.512.753.13K2O3.43.13.12.732.582.66H2O0.790.792.112.11P2O50.20.150.150.120.150.14Total100.1797.9897.9898.8098.4199.71Uppercrustalcompositionalestimates
(TaylorandMcLennan,1985)Comparisonofloessanduppercrustalcompositions(TaylorandMcLennan,1985)Part3-4-2ThedeepcrustMethodsofStudiesAmphibolite角閃巖-andgranulite-faciesxenolithsentrained攜帶mostlyinbasalts.ExposeddeepcrustalsectionsCorrelationofseismicvelocitiesofrockswithlithologiesHeatflowconstraintsCrustalstructurebasedondeepcrusalxenoliths
(Mengeletal.,1992)DeepCrustalXenolithsMostlygranulite-faciesExposedDeepCrustalSectionModelforexposeddeepcrustalcross-section
(PercivalandFountain,1992)P-waveandPoisson’s(泊松)ratiostructurealongtheexposedKapuskasingdeepcrustalsection
(PercivalandFountain,1994)P-wavevelocity(km)Poisson’sratioContrastsbetweengranulitexenolithsandterraingranulites
麻
粒
巖
地
體
麻
粒
巖
包
體
時
代
太古-
元古宙
后太古宙
壓
力700-1000MPa1000-1500MPa
深
度25-35km35-50km
巖
性中性和長英質(zhì)為主
鎂鐵質(zhì)-超鎂鐵質(zhì)為主
SiO255-75%40-55%CorrelationofseismicvelocitieswithrocktypesCompressionalP-wavevelocity(Vp)ShearS-wavevelocity(Vs)Poisson’sratio(
)
=0.5{1–1/[(Vp/Vs)2–1]}Measurementof
seismicvelocities
ofrocksCalculationofvelocitiesindepthV(z)=V(0)+[(dV/dP)T
P+(dV/dT)PT]dzWhereV(0)andV(z)arevelcitiesatareferencestateandatdepthz.Forcommonrocks,(dV/dP)T=2
10-4to7
10-4kms-1MPa-1;(dV/dT)P=-2
10-4to-6
10-4kms-1
C-1
EffectofheatflowonVp
(RudnickandFountain,1995)150MPa
下侵入巖Vp隨成分的變化
(FountainandChristensen,1989)Relationbetween
SiO2andVpof
granulites
(RudnickandFountain,1995)DensityvsVpPeridotiteEclogiteMaficgranulitePeridotite
橄欖巖Eclogite
榴輝巖Gabbro
輝長巖1、蛇紋巖2、石英巖3、花崗巖4、花崗閃長巖5、角閃巖相長英質(zhì)片麻巖6、石英云母片巖7、綠片巖相變輝長巖8、輝長巖9、斜長角閃巖1、長英質(zhì)角閃片麻巖2、長英質(zhì)片麻巖3、中性麻粒巖4、斜長巖5、鎂鐵質(zhì)麻粒巖6、斜長角閃巖7、麻粒巖相變泥質(zhì)巖8、輝石巖9、榴輝巖10、純橄欖巖/二輝橄欖巖Holbrooketal.(1992)Crustalstructureinvarioustectonicsettings
(RudnickandFountain,1995)Normativemineral(標(biāo)準(zhǔn)礦物)
compositionofcontinentalcrust
(TaylorandMcLennan,1995)ilmenite[‘ilm?nait]n.[礦]鈦鐵礦hypersthene['haip?sθi:n]n.[礦]紫蘇輝石Comparisonofcontinentalcrustandvariousbasalts
(Hoffmann,1994)compatibility[k?m,p?t?'bil?ti]n.兼容性CompositionalcharacteristicsofcontinentalcrustTheuppercrustisgraniticwith66%SiO2andwithasignificantnegativeEuanomaly.Themiddlecrustistonalitic(閃長質(zhì))with61%SiO2.Thelowercrustismaficinmanyregionswith~52%SiO2andmaybemoreevolvedforsomecratons(e.g.,NorthChinaCraton)andcollisionbelts.RelativedepletioninNbandenrichmentinPbcharacterizethecontinentalcrustandcontinentalcrustalrocks-“thearcsignature”.Thetotalcontinentalcrusthasanandesitic(安山質(zhì))/granodioriticbulkcompositionwith59-62%.ItcontainsasignificantproportionofthebulksilicateEarth’sincompatibleelementbudget(33-35%ofRb,Ba,K,Pb,ThandU).Schematicmodelforgrowthandevolutionofthecontinentalcrust
(TaylorandMcLennan,1995)bombardment[b?m'ba:dm?nt]n.轟炸;炮擊Continentalcrust
LaCePrNdSmEuGdTbDyHoErTmYbLu110100Rock/ChondriteEastChina(thisstudy;Eu/Eu*=0.80)Wedepohl(1995;Eu/Eu*=0.83)Rudnick&Fountain(1995;Eu/Eu*=0.98)Taylor&McLennan(1995;Eu/Eu*=1.00)TotalContinentalCrustContrastinglowercrustalvelocitiesforArcheanandProterozoicprovinces
(DurrheimandMooney,1991)ThefollowingslidesarenotusedinthelecturesGenerationoftholeiitic(拉斑玄武巖)andalkalinebasaltsfromachemicallyuniformmantleVariables(otherthanX)TemperaturePressureFigure10-2
Phasediagramofaluminouslherzolite(二輝橄欖巖)withmeltinginterval(gray),sub-solidusreactions,andgeothermalgradient.AfterWyllie,P.J.(1981).Geol.Rundsch.70,128-153.
Liquidsandresiduumofmeltedpyrolite(地幔巖)Figure10-9AfterGreenandRingwood(1967).
EarthPlanet.Sci.Lett.2,151-160.
tholeiite['θ?uli:ait]n.[地]拉斑玄武巖granophyre['ɡr?n?ufai?]n.花斑巖InitialConclusions:Tholeiitesfavoredbyshallowermelting25%meltingat<30km?tholeiite25%meltingat60km?olivinebasaltTholeiitesfavoredbygreater%partialmelting20%meltingat60km?alkalinebasaltincompatibles(alkalis)?initialmelts30%meltingat60km?tholeiiteCrystalFractionationofmagmasastheyriseTholeiite?alkalinebyFXatmedtohighPNotatlowPThermaldivideAlinpyroxenesatHiPLow-PFX?hi-Alshallowmagmas(“hi-Al”basalt)Figure10-10SchematicrepresentationofthefractionalcrystallizationschemeofGreenandRingwood(1967)andGreen(1969).AfterWyllie(1971).
TheDynamicEarth:TextbookinGeosciences.JohnWiley&Sons.
nephelinite['nefilinait]n.霞石巖picrite['pikrait]n.苦橄巖PrimarymagmasFormedatdepthandnotsubsequentlymodifiedbyFXorAssimilation(同化)CriteriaHighestMg#(100Mg/(Mg+Fe))really?
parentalmagmaExperimentalresultsoflherzolitemeltsMg#=66-75Cr>1000ppmNi>40
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 咋樣寫供貨合同范本
- 發(fā)改ppp合同范本
- 買賣銅幣合同范本
- 可再生能源項(xiàng)目合同范本
- 品牌股權(quán)合同范本
- 啟東農(nóng)田流轉(zhuǎn)合同范本
- 廠房帶門面裝修合同范本
- 寫抖音合同范例
- 買房簽意向合同范例
- 動物實(shí)驗(yàn)合同范本
- 雕版印刷術(shù)的發(fā)明《金剛經(jīng)》課件
- 國際合規(guī)要求與企業(yè)管理
- 巖腳煤礦智能化綜采工作面匯報(bào)材料2020.11.10.11.10
- 餐廳每日清潔計(jì)劃
- 數(shù)據(jù)湖構(gòu)建及應(yīng)用場景
- 切格瓦拉完整
- 高考小說閱讀強(qiáng)化訓(xùn)練:孫犁小說專題(附答案解析)
- 向云端二聲部五線正譜
- 部編版六年級下冊道德與法治全冊表格式教學(xué)設(shè)計(jì)
- 兵團(tuán)歷史與兵團(tuán)精神課件
評論
0/150
提交評論