鄭州市外國語中學2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
鄭州市外國語中學2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
鄭州市外國語中學2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
鄭州市外國語中學2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
鄭州市外國語中學2023年九年級數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

鄭州市外國語中學2023年九年級數(shù)學第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知一次函數(shù)與反比例函數(shù)的圖象有2個公共點,則的取值范圍是()A. B. C.或 D.2.在平面直角坐標系中,點,,過第四象限內一動點作軸的垂線,垂足為,且,點、分別在線段和軸上運動,則的最小值是()A. B. C. D.3.“鳳鳴”文學社在學校舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設該組共有x名同學,那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2104.如圖所示,在⊙O中,=,∠A=30°,則∠B=()A.150° B.75° C.60° D.15°5.二次函數(shù)的圖象是一條拋物線,下列說法中正確的是()A.拋物線開口向下 B.拋物線經過點C.拋物線的對稱軸是直線 D.拋物線與軸有兩個交點6.數(shù)學興趣小組的同學們想利用樹影測量樹高.課外活動時他們在陽光下測得一根長為1米的竹竿的影子是0.9米,同一時刻測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的臺階上,且影子的末端剛好落在最后一級臺階的上端C處,他們測得落在地面的影長為1.1米,臺階總的高度為1.0米,臺階水平總寬度為1.6米.則樹高為()A.3.0m B.4.0m C.5.0m D.6.0m7.在平面直角坐標系中,以原點O為圓心的⊙O交x軸正半軸為M,P為圓上一點,坐標為(,1),則cos∠POM=()A. B. C. D.8.已知,是方程的兩個實數(shù)根,則的值是()A.2023 B.2021 C.2020 D.20199.如圖,若一次函數(shù)的圖象經過二、三、四象限,則二次函數(shù)的圖象可能是A. B.C. D.10.已知m是方程的一個根,則代數(shù)式的值等于()A.2005 B.2006 C.2007 D.2008二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,邊長為6的正六邊形ABCDEF的對稱中心與原點O重合,點A在x軸上,點B在反比例函數(shù)位于第一象限的圖象上,則k的值為.12.如圖,是⊙O的直徑,弦,垂足為E,如果,那么線段OE的長為__________.13.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當時,隨值的增大而增大;⑤當時,.其中,正確的說法有________(請寫出所有正確說法的序號).14.將拋物線y=x2﹣2x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為____________________________15.點P(4,﹣6)關于原點對稱的點的坐標是_____.16.如圖,正方形ABEF與正方形BCDE有一邊重合,那么正方形BCDE可以看成是由正方形ABEF繞點O旋轉得到的,則圖中點O的位置為_____.17.某數(shù)學興趣小組利用太陽光測量一棵樹的高度(如圖),在同一時刻,測得樹的影長為6米,小明的影長為1米,已知小明的身高為1.5米,則樹高為_________米.18.如圖所示是二次函數(shù)的圖象,下列結論:①二次三項式的最大值為;使成立的的取值范圍是;一元二次方程,當時,方程總有兩個不相等的實數(shù)根;該拋物線的對稱軸是直線;其中正確的結論有______________(把所有正確結論的序號都填在橫線上)三、解答題(共66分)19.(10分)如圖,在與中,,且.求證:.20.(6分)AB是⊙O的直徑,C點在⊙O上,F(xiàn)是AC的中點,OF的延長線交⊙O于點D,點E在AB的延長線上,∠A=∠BCE.(1)求證:CE是⊙O的切線;(2)若BC=BE,判定四邊形OBCD的形狀,并說明理由.21.(6分)如圖,的三個頂點在平面直角坐標系中正方形的格點上.(1)求的值;(2)點在反比例函數(shù)的圖象上,求的值,畫出反比例函數(shù)在第一象限內的圖象.22.(8分)拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),與y軸交于點C.點D(xD,yD)為拋物線上一個動點,其中1<xD<1.連接AC,BC,DB,DC.(1)求該拋物線的解析式;(2)當△BCD的面積等于△AOC的面積的2倍時,求點D的坐標;(1)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標;若不存在,請說明理由.23.(8分)如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.(1)求拋物線的解析式及其頂點Q的坐標;(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標;(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.①有一個同學說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點D運動至點Q時,折線D-E-O的長度最長”,這個同學的說法正確嗎?請說明理由.②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標;若不能,請簡要說明理由.24.(8分)如圖,在△ABC中,∠C=90°,AB的垂直平分線分別交邊AB、BC于點D、E,連結AE.(1)如果∠B=25°,求∠CAE的度數(shù);(2)如果CE=2,,求的值.25.(10分)現(xiàn)有甲、乙、丙三人組成的籃球訓練小組,他們三人之間進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.(1)若開始時籃球在甲手中,則經過第一次傳球后,籃球落在丙的手中的概率是;(2)若開始時籃球在甲手中,求經過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)26.(10分)如圖,與是位似圖形,點O是位似中心,,,求DE的長.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】將兩個解析式聯(lián)立整理成關于x的一元二次方程,根據判別式與根的關系進行解題即可.【詳解】將代入到中,得,整理得∵一次函數(shù)與反比例函數(shù)的圖象有2個公共點∴方程有兩個不相等的實數(shù)根所以解得或故選C.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)圖像交點問題,能用函數(shù)的思想思考問題是解題的關鍵.2、B【分析】先求出直線AB的解析式,再根據已知條件求出點C的運動軌跡,由一次函數(shù)的圖像及性質可知:點C的運動軌跡和直線AB平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,然后利用銳角三角函數(shù)求MN即可求出CE.【詳解】解:設直線AB的解析式為y=ax+b(a≠0)將點,代入解析式,得解得:∴直線AB的解析式為設C點坐標為(x,y)∴CD=x,OD=-y∵∴整理可得:,即點C的運動軌跡為直線的一部分由一次函數(shù)的性質可知:直線和直線平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,如圖所示在Rt△AOB中,AB=,sin∠BAO=在Rt△AMN中,AM=6,sin∠MAN=∴CE=MN=,即的最小值是.故選:B.【點睛】此題考查的是一次函數(shù)的圖像及性質、動點問題和解直角三角形,掌握用待定系數(shù)法求一次函數(shù)的解析式、一次函數(shù)的圖像及性質、垂線段最短和平行線之間的距離處處相等是解決此題的關鍵.3、B【詳解】設全組共有x名同學,那么每名同學送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.4、B【詳解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形內角和定理).故選B.考點:圓心角、弧、弦的關系.5、D【分析】根據二次函數(shù)的性質對A、C進行判斷;根據二次函數(shù)圖象上點的坐標特征對B進行判斷;利用方程2x2-1=0解的情況對D進行判斷.【詳解】A.

a=2,則拋物線y=2x2?1的開口向上,所以A選項錯誤;B.當x=1時,y=2×1?1=1,則拋物線不經過點(1,-1),所以B選項錯誤;C.拋物線的對稱軸為直線x=0,所以C選項錯誤;D.當y=0時,2x2?1=0,此方程有兩個不相等的實數(shù)解,所以D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,結合圖像是解題的關鍵.6、B【分析】根據同一時刻物高與影長成正比例列式計算即可.【詳解】根據同一時刻物高與影長成正比例可得,如圖,∴=.∴AD=1.∴AB=AD+DB=1+1=2.故選:B.【點睛】本題考查了相似三角形的應用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,加上DB的長即可.解此題的關鍵是找到各部分以及與其對應的影長.7、A【解析】試題分析:作PA⊥x軸于A,∵點P的坐標為(,1),∴OA=,PA=1,由勾股定理得,OP=2,cos∠POM==,故選A.考點:銳角三角函數(shù)8、A【分析】根據題意可知b=3-b2,a+b=-1,ab=-3,所求式子化為a2-b+2019=a2-3+b2+2019=(a+b)2-2ab+2016即可求解.【詳解】,是方程的兩個實數(shù)根,∴,,,∴;故選A.【點睛】本題考查一元二次方程的根與系數(shù)的關系;根據根與系數(shù)的關系將所求式子進行化簡代入是解題的關鍵.9、C【分析】根據一次函數(shù)的性質判斷出a、b的正負情況,再根據二次函數(shù)的性質判斷出開口方向與對稱軸,然后選擇即可.【詳解】解:的圖象經過二、三、四象限,,,拋物線開口方向向下,拋物線對稱軸為直線,對稱軸在y軸的左邊,縱觀各選項,只有C選項符合.故選C.【點睛】本題考查了二次函數(shù)的圖象,一次函數(shù)的圖象與系數(shù)的關系,主要利用了二次函數(shù)的開口方向與對稱軸,確定出a、b的正負情況是解題的關鍵.10、D【分析】由m是方程x2-2006x+1=0的一個根,將x=m代入方程,得到關于m的等式,變形后代入所求式子中計算,即可求出值.【詳解】解:∵m是方程x2-2006x+1=0的一個根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m?1,則=====2006+2=2008故選:D.【點睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.二、填空題(每小題3分,共24分)11、【解析】試題分析:連接OB,過B作BM⊥OA于M,∵六邊形ABCDEF是正六邊形,∴∠AOB=10°.∵OA=OB,∴△AOB是等邊三角形.∴OA=OB=AB=1.∴BM=OB?sin∠BOA=1×sin10°=,OM=OB?COS10°=2.∴B的坐標是(2,).∵B在反比例函數(shù)位于第一象限的圖象上,∴k=2×=.12、6【分析】連接OD,根據垂徑定理,得出半徑OD的長和DE的長,然后根據勾股定理求出OE的長即可.【詳解】∵是⊙O的直徑,弦,垂足為E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本題答案為:6.【點睛】本題考查了垂徑定理和勾股定理的應用,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.13、①②④【分析】根據拋物線的對稱軸判斷①,根據拋物線與x軸的交點坐標判斷②,根據函數(shù)圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點坐標為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當x>1時,y隨x值的增大而增大,④正確;當y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.14、或【分析】根據函數(shù)圖象向上平移加,向右平移減,可得函數(shù)解析式.【詳解】解:將y=x1-1x+3化為頂點式,得:y=(x-1)1+1.將拋物線y=x1-1x+3向上平移1個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案為:或.【點睛】本題考查了二次函數(shù)圖象與幾何變換,函數(shù)圖象的平移規(guī)律是:左加右減,上加下減.15、(﹣4,6)【分析】根據兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】點P(4,﹣6)關于原點對稱的點的坐標是(﹣4,6),故答案為:(﹣4,6).【點睛】本題考查了一點關于原點對稱的問題,橫縱坐標取相反數(shù)就是對稱點的坐標.16、點B或點E或線段BE的中點.【分析】由旋轉的性質分情況討論可求解;【詳解】解:∵正方形BCDE可以看成是由正方形ABEF繞點O旋轉得到的,∴若點A與點E是對稱點,則點B是旋轉中心是點B;若點A與點D是對稱點,則點B是旋轉中心是BE的中點;若點A與點E是對稱點,則點B是旋轉中心是點E;故答案為:點B或點E或線段BE的中點.【點睛】本題考查了旋轉的性質,正方形的性質,利用分類討論是本題的關鍵.17、1【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,對應比值相等進而得出答案.【詳解】解:根據相同時刻的物高與影長成比例.設樹的高度為,則,解得:.故答案為:1.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握其性質定義.18、①③④【分析】根據圖象求出二次函數(shù)的解析式,根據二次函數(shù)的性質結合圖象可以判斷各個小題中的結論是否正確.【詳解】由函數(shù)圖象可知:拋物線過(-3,0),(1,0),(0,3),∴設拋物線解析式為,把(0,3)代入得:3=,解得:a=-1,∴拋物線為,即,∴二次三項式ax2+bx+c的最大值為4,故①正確,由=3,解得:x=0或x=-2,由圖像可知:使y≤3成立的x的取值范圍是x≤﹣2或x≥0,故②錯誤.∵二次三項式ax2+bx+c的最大值為4,∴當k<4時,直線y=k與拋物線有兩個交點,∴當k<4時,方程一元二次方程總有兩個不相等的實數(shù)根,故③正確,該拋物線的對稱軸是直線x=﹣1,故④正確,當x=﹣2時,y=4a﹣2b+c>0,故⑤錯誤.故答案為:①③④.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系、二次函數(shù)的最值、拋物線與x軸的交點,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.三、解答題(共66分)19、見解析【分析】先證得,利用有兩條對應邊的比相等,且其夾角相等,即可判定兩個三角形相似.【詳解】∵,∴,即,又,∴.【點睛】本題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩條對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似,熟記各種判定相似三角形的方法是解題關鍵.20、(1)證明見解析;(2)四邊形OBCD是菱形,理由見解析.【分析】(1)證明∠OCE=90°問題可解;(2)由同角的余角相等,可得∠BCO=∠BOC,再得到△BCO是等邊三角形,故∠AOC=120°,再由垂徑定理得到AF=CF,推出△COD是等邊三角形問題可解.【詳解】(1)證明:∵AB是⊙O的直徑,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OC=OA,∴∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切線;(2)解:四邊形OBCD是菱形,理由:∵BC=BE,∴∠E=∠ECB,∵∠BCO+∠BCE=∠COB+∠E=90°,∴∠BCO=∠BOC,∴BC=OB,∴△BCO是等邊三角形,∴∠AOC=120°,∵F是AC的中點,∴AF=CF,∵OA=OC,∴∠AOD=∠COD=60°,∵OD=OC,∴△COD是等邊三角形,∴CD=OD=OB=BC,∴四邊形OBCD是菱形.【點睛】本題考查了切線的判定,菱形的判定,垂徑定理,等邊三角形的判定和性質,解答關鍵是根據題意找出并證明題目中的等邊三角形.21、(1);(2),圖見解析【分析】(1)過點B作BD⊥AC于點D,然后在Rt△ABD中可以求出;(2)將點B代入,可得出k的值,從而得出反比例函數(shù)解析式,進而用描點法畫出函數(shù)圖象即可.【詳解】解:(1)過點B作BD⊥AC于點D,由圖可得,BD=2,AD=4,∴.(2)將點B(1,3)代入,得k=3,∴反比例函數(shù)解析式為.函數(shù)在第一象限內取點,描點得,x(x>0)1236y6322連線得函數(shù)圖象如圖:【點睛】本題主要考查正切值的求法,反比例函數(shù)解析式的求法以及反比例函數(shù)圖象的畫法,掌握基本概念和作圖步驟是解題的關鍵.22、(1)拋物線的解析式為y=﹣x2+2x+1;(2)點D坐標(2,1);(1)M坐標(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系數(shù)法求函數(shù)解析式;(2)根據解析式先求出△AOC的面積,設點D(xD,yD),由直線BC的解析式表示點E的坐標,求出DE的長,再由△BCD的面積等于△AOC的面積的2倍,列出關于xD的方程得到點D的坐標;(1)設點M(m,0),點N(x,y),分兩種情況討論:當BD為邊時或BD為對角線時,列中點關系式解答.【詳解】解:(1)∵拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),∴,解得:∴拋物線的解析式為y=﹣x2+2x+1;(2)如圖,過點D作DH⊥x軸,與直線BC交于點E,∵拋物線y=﹣x2+2x+1,與y軸交于點C,∴點C(0,1),∴OC=1,∴S△AOC=×1×1=,∵點B(1,0),點C(0,1)∴直線BC解析式為y=﹣x+1,∵點D(xD,yD),∴點E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面積等于△AOC的面積的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴點D坐標(2,1);(1)設點M(m,0),點N(x,y)當BD為邊,四邊形BDNM是平行四邊形,∴BN與DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴,∴m=1,當BD為邊,四邊形BDMN是平行四邊形,∴BM與DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,當BD為對角線,∴BD中點坐標(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合題意),x=0∴點N(0,1)∴m=5,綜上所述點M坐標(1,0)或(,0)或(﹣,0)或(5,0).【點睛】此題是二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,動線、動圖形與拋物線的結合問題,在(1)使以點B,D,M,N為頂點的四邊形是平行四邊形時,要分情況討論:當BD為邊時或BD為對角線時,不要有遺漏,平行四邊形的性質:對角線互相平分,列中點坐標等式求得點M的坐標.23、(1)y-(x-2)2+9,Q(2,9);(2)(2,3);作圖見解析;(3)①不正確,理由見解析;②不能,理由見解析.【分析】(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中即可確定b、c的值,然后配方后即可確定其頂點坐標;(2)連接BC,交對稱軸于點P,連接AP、AC.求得C點的坐標后然后確定直線BC的解析式,最后求得其與x=2與直線BC的交點坐標即為點P的坐標;(3)①設D(t,-t2+4t+1),設折線D-E-O的長度為L,求得L的最大值后與當點D與Q重合時L=9+2=11<相比較即可得到答案;②假設四邊形DCEB為平行四邊形,則可得到EF=DF,CF=BF.然后根據DE∥y軸求得DF,得到DF>EF,這與EF=DF相矛盾,從而否定是平行四邊形.【詳解】解:(1)將A(-1,0)、B(1,0)分別代入y=-x2+bx+c中,得,解得∴y=-x2+4x+1.∵y=-x2+4x+1=-(x-2)2+9,∴Q(2,9).(2)如圖1,連接BC,交對稱軸于點P,連接AP、AC.∵AC長為定值,∴要使△PAC的周長最小,只需PA+PC最?。唿cA關于對稱軸x=2的對稱點是點B(1,0),拋物線y=-x2+4x+1與y軸交點C的坐標為(0,1).∴由幾何知識可知,PA+PC=PB+PC為最?。O直線BC的解析式為y=kx+1,將B(1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴當x=2時,y=3,∴點P的坐標為(2,3).(3)①這個同學的說法不正確.∵設D(t,-t2+4t+1),設折線D-E-O的長度為L,則L=?t2+4t+1+t=?t2+1t+1=?(t?)2+,∵a<0,∴當t=時,L最大值=.而當點D與Q重合時,L=9+2=11<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論