浙教版七年級上學期期中【???0題考點專練】(原卷版+解析版)_第1頁
浙教版七年級上學期期中【常考60題考點專練】(原卷版+解析版)_第2頁
浙教版七年級上學期期中【???0題考點專練】(原卷版+解析版)_第3頁
浙教版七年級上學期期中【???0題考點專練】(原卷版+解析版)_第4頁
浙教版七年級上學期期中【常考60題考點專練】(原卷版+解析版)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

浙江七年級上學期期中【???0題考點專練】一.正數(shù)和負數(shù)(共2小題)1.(2021秋?嵊州市期中)超市出售的某種品牌的面粉包裝上標有質(zhì)量為(10±0.3)kg字樣,從中任意拿出兩袋,它們的質(zhì)量最多相差()kg.A.0.6 B.0.3 C.10.3 D.20.62.(2021秋?西湖區(qū)校級期中)小蟲從某點O出發(fā)在一直線上來回爬行,假定向右爬行路程記為正,向左爬行的路程記為負,爬過的路程依次為(單位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.問:(1)小蟲是否回到原點O?(2)小蟲離開出發(fā)點O最遠是多少厘米?(3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,則小蟲共可得到多少粒芝麻?二.有理數(shù)(共1小題)3.(2021秋?椒江區(qū)校級期中)把下列各數(shù)的序號填在相應的數(shù)集內(nèi):①1②﹣③+3.2④0⑤⑥﹣6.5⑦+108⑧﹣4⑨﹣6(1)正整數(shù)集合{…}(2)正分數(shù)集合{…}(3)負分數(shù)集合{…}(4)負數(shù)集合{…}.三.數(shù)軸(共7小題)4.(2021秋?平陽縣期中)已知有理數(shù)a,b,c在數(shù)軸上的對應點如圖所示,則下列說法正確的是()A.a(chǎn)+c>0 B.﹣c+a>0 C.﹣c<﹣a<b D.|c|<|﹣a|5.(2021秋?奉化區(qū)期中)一個數(shù)a在數(shù)軸上表示的點是A,當點A在數(shù)軸上向左平移了3個單位長度后到點B,點A與點B表示的數(shù)恰好互為相反數(shù),則數(shù)a是()A.﹣3 B.﹣1.5 C.1.5 D.36.(2021秋?青田縣校級期中)數(shù)軸上的點A表示的數(shù)為﹣10,點B表示的數(shù)為﹣4,則A、B之間的距離為.7.(2021秋?義烏市期中)等邊△ABC在數(shù)軸上的位置如圖所示,點A、C對應的數(shù)分別為0和﹣1,若△ABC繞頂點沿順時針方向在數(shù)軸上連續(xù)翻轉(zhuǎn),翻轉(zhuǎn)1次后,點B所對應的數(shù)為1,則連續(xù)翻轉(zhuǎn)100次后,點B()A.不對應任何數(shù) B.對應的數(shù)是99 C.對應的數(shù)是100 D.對應的數(shù)是1018.(2021秋?平陽縣期中)數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度為1cm,若在數(shù)軸上畫出一條長2020cm的線段AB,則線段AB蓋住的整點個數(shù)是()A.2020 B.2021 C.2020或2021 D.2019或20209.(2021秋?鎮(zhèn)海區(qū)校級期中)在數(shù)軸上,已知在紙面上有一數(shù)軸(如圖),折疊紙面.(1)若1表示的點與﹣1表示的點重合,則﹣2表示的點與何數(shù)表示的點重合;(2)若﹣1表示的點與5表示的點重合,0表示的點與何數(shù)表示的點重合;(3)若﹣1表示的點與5表示的點之間的線段折疊2次,展開后,請寫出所有的折點表示的數(shù)?10.(2021秋?諸暨市期中)已知點A在數(shù)軸上對應的數(shù)為a,點B在數(shù)軸上對應的數(shù)為b,且|a+3|+|b﹣2|=0,A、B之間的距離記為|AB|=|a﹣b|或|b﹣a|,請回答問題:(1)直接寫出a,b,|AB|的值,a=,b=,|AB|=.(2)設點P在數(shù)軸上對應的數(shù)為x,若|x﹣3|=5,則x=.(3)如圖,點M,N,P是數(shù)軸上的三點,點M表示的數(shù)為4,點N表示的數(shù)為﹣1,動點P表示的數(shù)為x.①若點P在點M、N之間,則|x+1|+|x﹣4|=;②若|x+1|+|x﹣4|=10,則x=;③若點P表示的數(shù)是﹣5,現(xiàn)在有一螞蟻從點P出發(fā),以每秒1個單位長度的速度向右運動,當經(jīng)過多少秒時,螞蟻所在的點到點M、點N的距離之和是8?四.相反數(shù)(共2小題)11.(2021秋?永嘉縣期中)2021的相反數(shù)是()A.2021 B.﹣2021 C. D.12.(2021秋?蕭山區(qū)期中)下列各數(shù)中,5的相反數(shù)是()A.﹣5 B.5 C.﹣ D.五.絕對值(共5小題)13.(2021秋?諸暨市期中)﹣2的絕對值是()A.2 B.﹣2 C. D.﹣14.(2021秋?慈溪市期中)|a|=1,|b|=4,且ab<0,則a+b的值為()A.3 B.﹣3 C.±3 D.±515.(2021秋?西湖區(qū)校級期中)已知:|x|=3,|y|=5,且xy<0,則x+y=.16.(2021秋?西湖區(qū)校級期中)若實數(shù)a、b、c滿足|a﹣b|=1,|a﹣c|=7,則|b﹣c|的值為()A.6 B.7 C.6或8 D.6或717.(2021秋?諸暨市期中)對于一個數(shù)x,我們用(x]表示小于x的最大整數(shù),例如:(2.6]=2,(﹣3]=﹣4.(1)填空:(10]=.(﹣2019]=,(]=;(2)若a,b都是整數(shù),且(a]和(b]互為相反數(shù),求代數(shù)式a﹣(a+b)×3+b的值;(3)若|(x]|+|(x﹣2]|=6,求x的取值范圍.六.倒數(shù)(共1小題)18.(2021秋?鄞州區(qū)校級期中)﹣的倒數(shù)是()A. B.﹣ C. D.﹣七.有理數(shù)大小比較(共3小題)19.(2021秋?義烏市期中)有理數(shù)a、b在數(shù)軸上的位置如圖所示,那么a、﹣a、b、﹣b的大小關(guān)系是()A.﹣a<a<b<﹣b B.a(chǎn)<﹣a<b<﹣b C.﹣b<a<﹣a<b D.b<﹣b<a<﹣a20.(2021秋?鎮(zhèn)海區(qū)校級期中)若﹣1<a<0,則a,,a2由小到大排列正確的是()A.a(chǎn)2<a< B.a(chǎn)<<a2 C.<a<a2 D.a(chǎn)<a2<21.(2021秋?新昌縣期中)大于﹣3.1而小于2的整數(shù)有個.八.有理數(shù)的加法(共2小題)22.(2021秋?平陽縣期中)計算:﹣3+2的結(jié)果是()A.﹣1 B.﹣5 C.1 D.523.(2021秋?越城區(qū)期中)王先生到市行政中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作﹣1,王先生從1樓出發(fā),電梯上下樓層依次記錄如下(單位:層):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)請你通過計算說明王先生最后是否回到出發(fā)點1樓.(2)該中心大樓每層高3m,電梯每向上或下1m需要耗電0.2度,根據(jù)王先生現(xiàn)在所處位置,請你算算,他辦事時電梯需要耗電多少度?九.有理數(shù)的減法(共1小題)24.(2021秋?濱江區(qū)校級期中)1﹣π的相反數(shù)是.一十.有理數(shù)的加減混合運算(共2小題)25.(2021秋?長興縣期中)已知[x]表示不超過x的最大整數(shù).如:[3.2]=3,[﹣0.7]=﹣1.現(xiàn)定義:{x}=[x]﹣x,如{1.5}=[1.5]﹣1.5=﹣0.5,則{3.9}+{﹣}﹣{1}=.26.(2021秋?慈溪市期中)小林的父親上星期六買進某公司股票1000股,每股27元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)星期一二三四五六每股漲跌+4+4.5﹣1﹣2.5﹣6+2(1)星期三收盤時,每股多少元?(2)本周內(nèi)最高價是每股多少元?最低價是每股多少元?(3)已知小林的父親買進股票時付了1.5‰的手續(xù)費,賣出時須付總金額1.5‰的手續(xù)費和1‰的交易稅,如果他在周六收盤前將股票全部賣出,他的收益情況如何?一十一.有理數(shù)的乘法(共2小題)27.(2021秋?諸暨市期中)如圖所示,數(shù)軸上的A、B、C三點所表示的數(shù)分別為a、b、c,則下列式子正確的是()A.a(chǎn)c>0 B.c+a>0 C.﹣a<﹣b D.>028.(2021秋?北侖區(qū)期中)絕對值不大于4.5的所有整數(shù)的和為,積為.一十二.有理數(shù)的混合運算(共4小題)29.(2021秋?諸暨市期中)如圖所示是計算機某計算程序,若開始輸入x=2,則最后輸出的結(jié)果是.30.(2021秋?諸暨市期中)有20箱蘋果,以每箱15千克為標準,超過15千克的數(shù)記為正數(shù),不足15千克的數(shù)記為負數(shù),稱重記錄如下:與標準質(zhì)量的差(千克)﹣0.5﹣0.4﹣0.20+0.2+0.3+0.6箱數(shù)(箱)2152424(1)最重的一箱比最輕的一箱重千克;(2)求這20箱蘋果的總質(zhì)量;(3)若這批蘋果的批發(fā)價是8.5元/千克,售價是15元/千克,運輸和出售過程中有10%的蘋果腐爛無法出售,則出售這20箱蘋果能盈利多少元?31.(2021秋?長興縣期中)如圖,某學校“桃李餐廳”把WIFI密碼做成了數(shù)學題.小紅在餐廳就餐時,思索了一會兒,輸入密碼,順利地連接到了“桃李餐廳”的網(wǎng)絡.那么她輸入的密碼是.32.(2021秋?龍灣區(qū)期中)小明有5張寫著以下數(shù)字的卡片,請你按要求抽出卡片,完成下列各題.(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是.(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最小,最小值是.(3)從中取出除0以外的4張卡片,將這4個數(shù)字進行加、減、乘、除或乘方等混合運算,使結(jié)果為24,(注:每個數(shù)字只能用一次,如:23×[1﹣(﹣2)]=8×3=24),請另寫出一種符合要求的運算式子.一十三.近似數(shù)和有效數(shù)字(共1小題)33.(2021秋?諸暨市期中)用四舍五入法對0.06045取近似值,錯誤的是()A.0.1(精確到0.1) B.0.06(精確到百分位) C.0.061(精確到千分位) D.0.0605(精確到0.0001)一十四.科學記數(shù)法—表示較大的數(shù)(共1小題)34.(2021秋?平陽縣期中)在過去的2020年,中國成為全球唯一實現(xiàn)經(jīng)濟正增長的主要經(jīng)濟體,GDP達到約152200億美元.數(shù)字152200用科學記數(shù)法可表示為()A.0.1522×106 B.1.522×105 C.1522×102 D.1.522×104一十五.平方根(共2小題)35.(2021秋?義烏市期中)已知一個正數(shù)x的兩個平方根分別是2a﹣2和a﹣4,則a=,x=.36.(2021秋?鄞州區(qū)校級期中)已知某數(shù)的一個平方根是,那么這個數(shù)是,它的另一個平方根是.一十六.算術(shù)平方根(共2小題)37.(2021秋?新昌縣期中)如圖是5×5方格子(每個小正方格的邊長為1個單位長度),圖中陰影部分是正方形,則此正方形的邊長為()A.3 B. C. D.538.(2021秋?諸暨市期中)16的算術(shù)平方根為()A.±4 B.4 C.2 D.±2一十七.立方根(共1小題)39.(2021秋?慈溪市期中)已知=1.147,=2.472,=0.5325,則的值是.一十八.無理數(shù)(共1小題)40.(2021秋?長興縣期中)在0,,﹣0.101001,π,中無理數(shù)的個數(shù)是個.一十九.實數(shù)的性質(zhì)(共1小題)41.(2021秋?鄞州區(qū)期中)已知a,b為實數(shù),下列說法:①若ab<0,且a,b互為相反數(shù),則=﹣1;②若a+b<0,ab>0,則|2a+3b|=﹣2a﹣3b;③若|a﹣b|+a﹣b=0,則b>a;④若|a|>|b|,則(a+b)×(a﹣b)是正數(shù);⑤若a<b,ab<0且|a﹣3|<|b﹣3|,則a+b>6,其中正確的說法有()個.A.2 B.3 C.4 D.5二十.實數(shù)與數(shù)軸(共3小題)42.(2021秋?新昌縣期中)實數(shù)a,b在數(shù)軸上的位置如圖所示,則下面的關(guān)系式中正確的個數(shù)為()①a+b>0;②b﹣a>0;③>;④|a|<|b|A.1 B.2 C.3 D.443.(2021秋?鎮(zhèn)海區(qū)校級期中)如圖,以數(shù)軸的單位長度線段為邊長作一個正方形,以表示數(shù)2的點為圓心,正方形對角線長為半徑畫半圓,交數(shù)軸于點A和點B,則點A表示的數(shù)是.44.(2021秋?西湖區(qū)校級期中)數(shù)軸是一個非常重要的數(shù)學工具,它使數(shù)和數(shù)軸上的點建立起對應關(guān)系,揭示了數(shù)與點之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎.小白在草稿紙上畫了一條數(shù)軸進行操作探究:操作一:(1)折疊紙面,若使表示的點1與﹣1表示的點重合,則﹣2表示的點與表示的點重合;操作二:(2)折疊紙面,若使1表示的點與﹣3表示的點重合,回答以下問題:①表示的點與數(shù)表示的點重合;②若數(shù)軸上A、B兩點之間距離為8(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,則A、B兩點表示的數(shù)分別是;操作三:(3)在數(shù)軸上剪下9個單位長度(從﹣1到8)的一條線段,并把這條線段沿某點折疊,然后在重疊部分某處剪一刀得到三條線段(如圖).若這三條線段的長度之比為1:1:2,則折痕處對應的點所表示的數(shù)可能是.二十一.實數(shù)大小比較(共1小題)45.(2021秋?西湖區(qū)校級期中)在數(shù)軸上近似地表示下列各數(shù),并把它們按從小到大的順序排列,用“<”連接:,﹣|﹣2|,π,﹣(﹣4).二十二.估算無理數(shù)的大小(共1小題)46.(2021秋?新昌縣期中)估算﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間二十三.列代數(shù)式(共2小題)47.(2021秋?下城區(qū)校級期中)一種商品每件成本a元,按成本增加22%標價.(1)每件標價多少元?(2)由于庫存積壓,實際按標價的九折出售,每件是盈利還是虧損?盈利或虧損多少元?48.(2021秋?下城區(qū)校級期中)從2012年7月1日起某市執(zhí)行新版居民階梯電價,小明同學家收到了新政后的第一張電費單,小明爸爸說:“小明,請你計算一下,這個月的電費支出與新政前相比是多了還是少了?”于是小明上網(wǎng)了解了有關(guān)電費的收費情況,得到如下兩表:2004年1月至2012年6月執(zhí)行的收費標準:月用電量(度)50度有以下部分超過50度但不超過200度部分超過200度以上部分單價(元/度)0.530.560.632012年7月起執(zhí)行的收費標準:月用電量(度)230度有以下部分超過230度但不超過400度部分超過400度以上部分單價(元/度)0.530.580.83(1)若小明家2012年7月份的用電量為200度,則小明家7月份的電費支出是多少元?比新政前少了多少元?(2)若新政后小明家的月用電量為a度,請你用含a的代數(shù)式表示當月的電費支出.二十四.代數(shù)式求值(共3小題)49.(2021秋?平陽縣期中)如圖,從一個長方形鐵皮中剪去一個小正方形.(1)請你用含有a、b的式子表示陰影部分的面積;(2)當a=7米,b=2米時,求陰影部分的面積.50.(2021秋?長興縣期中)當a=6,b=﹣2時,求下列代數(shù)式的值.(1)2ab;(2)a2+2ab+b2.51.(2021秋?澠池縣期中)按照“雙減”政策,豐富課后托管服務內(nèi)容,學校準備訂購一批籃球和跳繩,經(jīng)過市場調(diào)查后發(fā)現(xiàn)籃球每個定價120元,跳繩每條定價20元.某體育用品商店提供A、B兩種優(yōu)惠方案:A方案:買一個籃球送一條跳繩;B方案:籃球和跳繩都按定價的90%付款.已知要購買籃球50個,跳繩x條(x>50).(1)若按A方案購買,一共需付款元;(用含x的代數(shù)式表示),若按B方案購買,一共需付款元(用含x的代數(shù)式表示).(2)當x=100時,請通過計算說明此時用哪種方案購買較為合算?(3)當x=100時,你能給出一種更為省錢的購買方案嗎?請寫出你的購買方案,并計算需付款多少元?二十五.同類項(共2小題)52.(2021秋?平陽縣期中)下列各單項式中,與﹣2mn2是同類項的是()A.5mn B.2n2 C.3m2n D.mn253.(2021秋?椒江區(qū)校級期中)單項式3x4y2m﹣1與是同類項,則m=,n=.二十六.合并同類項(共1小題)54.(2021秋?嵊州市校級期中)若關(guān)于x、y的多項式x2﹣2kxy+y2+6xy﹣6中不含xy項,則k=.二十七.單項式(共1小題)55.(2021秋?西湖區(qū)校級期中)單項式﹣xy2的系數(shù)為.二十八.多項式(共1小題)56.(2021秋?青田縣校級期中)下列說法中,正確的是()A.﹣的系數(shù)是﹣2 B.32ab3的次數(shù)是6次 C.x2+x﹣1的常數(shù)項是1 D.是多項式二十九.整式的加減(共2小題)57.(2021秋?蕭山區(qū)期中)已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)化簡4A﹣(3A﹣2B);(2)當a=﹣1,b=﹣2時,求(1)中代數(shù)式的值;(3)若(1)中代數(shù)式的值與a的取值無關(guān),求b的值.58.(2021秋?嵊州市期中)符號“”稱為二階行列式,規(guī)定它的運算法規(guī)為:=ad﹣bc.(1)計算:=;(直接寫出答案)(2)化簡二階行列式:.三十.整式的加減—化簡求值(共2小題)59.(2021秋?西湖區(qū)校級期中)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化簡2A﹣3B.(2)當x+y=,xy=﹣1,求2A﹣3B的值.60.(2021秋?仙居縣期中)先化簡,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.浙江七年級上學期期中【常考60題考點專練】一.正數(shù)和負數(shù)(共2小題)1.(2021秋?嵊州市期中)超市出售的某種品牌的面粉包裝上標有質(zhì)量為(10±0.3)kg字樣,從中任意拿出兩袋,它們的質(zhì)量最多相差()kg.A.0.6 B.0.3 C.10.3 D.20.6【分析】根據(jù)正負數(shù)的意義列式計算即可得解.【解答】解:它們的質(zhì)量最多相差:0.3﹣(﹣0.3)=0.6(kg).故選:A.【點評】本題考查了正數(shù)和負數(shù),理解正負數(shù)的意義是解題的關(guān)鍵.2.(2021秋?西湖區(qū)校級期中)小蟲從某點O出發(fā)在一直線上來回爬行,假定向右爬行路程記為正,向左爬行的路程記為負,爬過的路程依次為(單位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.問:(1)小蟲是否回到原點O?(2)小蟲離開出發(fā)點O最遠是多少厘米?(3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,則小蟲共可得到多少粒芝麻?【分析】(1)把爬行記錄相加,然后根據(jù)正負數(shù)的意義解答;(2)根據(jù)正負數(shù)的意義分別求出各記錄時與出發(fā)點的距離,然后判斷即可;(3)求出所有爬行記錄的絕對值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小蟲最后能回到出發(fā)點O;(2)根據(jù)記錄,小蟲離開出發(fā)點O的距離分別為5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小蟲離開出發(fā)點的O最遠為12cm;(3)根據(jù)記錄,小蟲共爬行的距離為:5+3+10+8+6+12+10=54(cm),所以,小蟲共可得到54粒芝麻.【點評】此題主要考查了正負數(shù)的意義,解題關(guān)鍵是理解“正”和“負”的相對性,明確什么是一對具有相反意義的量.在一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.二.有理數(shù)(共1小題)3.(2021秋?椒江區(qū)校級期中)把下列各數(shù)的序號填在相應的數(shù)集內(nèi):①1②﹣③+3.2④0⑤⑥﹣6.5⑦+108⑧﹣4⑨﹣6(1)正整數(shù)集合{…}(2)正分數(shù)集合{…}(3)負分數(shù)集合{…}(4)負數(shù)集合{…}.【分析】(1)根據(jù)大于0的整數(shù)是正整數(shù),可得正整數(shù)集合;(2)根據(jù)大于0的分數(shù)是正分數(shù),可得正分數(shù)集合;(3)根據(jù)小于0的分數(shù)是負分數(shù),可得負分數(shù)集合;(4)根據(jù)小于0的數(shù)是負數(shù),可得負數(shù)集和.【解答】解:(1)正整數(shù)集合{①,⑦,…};(2)正分數(shù)集合{③,⑤,…};(3)負分數(shù)集合{②,⑥,…}(4)負數(shù)集合{②,⑥,⑧,⑨…}.【點評】本題考查了有理數(shù),注意負整數(shù)和負分數(shù)統(tǒng)稱負數(shù).三.數(shù)軸(共7小題)4.(2021秋?平陽縣期中)已知有理數(shù)a,b,c在數(shù)軸上的對應點如圖所示,則下列說法正確的是()A.a(chǎn)+c>0 B.﹣c+a>0 C.﹣c<﹣a<b D.|c|<|﹣a|【分析】根據(jù)a,b,c在數(shù)軸上的位置,可得c<b<0<a,|c|>|a|,對每個選項進行判定即可.【解答】解:A、∵c<b<0<a,|c|>|a|,∴a+c<0,故A選項錯誤;B、∵c<0,a>0,∴﹣c>0,∴﹣c+a>0,故B選項正確;C、∵c<b<0<a,∴﹣c>0,﹣a<0,∴﹣c>﹣a,故C選項錯誤;D、∵|﹣a|>0,|c|>0,|c|>|a|,∴|c|>|﹣a|,故D選項錯誤.故選:B.【點評】本題主要考查了根據(jù)數(shù)軸上的點判定數(shù)的大小和數(shù)軸上表示點的數(shù)的絕對值,根據(jù)數(shù)軸上表示數(shù)的點的位置判定數(shù)的大小是解決本題的關(guān)鍵.5.(2021秋?奉化區(qū)期中)一個數(shù)a在數(shù)軸上表示的點是A,當點A在數(shù)軸上向左平移了3個單位長度后到點B,點A與點B表示的數(shù)恰好互為相反數(shù),則數(shù)a是()A.﹣3 B.﹣1.5 C.1.5 D.3【分析】根據(jù)題意得出a﹣3=b,a=﹣b,求出即可.【解答】解:設B點表示的數(shù)是b,根據(jù)題意得:a﹣3=b,a=﹣b,解得:a=1.5,b=﹣1.5.故選:C.【點評】本題考查了絕對值,相反數(shù)的應用,關(guān)鍵是能根據(jù)題意得出方程a﹣3=b,a=﹣b.6.(2021秋?青田縣校級期中)數(shù)軸上的點A表示的數(shù)為﹣10,點B表示的數(shù)為﹣4,則A、B之間的距離為6.【分析】根據(jù)數(shù)軸上點A、B表示的數(shù),利用兩點間的距離公式即可解答.【解答】解:AB=(﹣4)﹣(﹣10)=6.故答案為:6.【點評】本題考查了數(shù)軸上兩點間的距離;掌握數(shù)軸上兩點間的距離公式是解題的關(guān)鍵.7.(2021秋?義烏市期中)等邊△ABC在數(shù)軸上的位置如圖所示,點A、C對應的數(shù)分別為0和﹣1,若△ABC繞頂點沿順時針方向在數(shù)軸上連續(xù)翻轉(zhuǎn),翻轉(zhuǎn)1次后,點B所對應的數(shù)為1,則連續(xù)翻轉(zhuǎn)100次后,點B()A.不對應任何數(shù) B.對應的數(shù)是99 C.對應的數(shù)是100 D.對應的數(shù)是101【分析】作出草圖,不難發(fā)現(xiàn),每3次翻轉(zhuǎn)為一個循環(huán)組依次循環(huán),100除以3余數(shù)為1,根據(jù)余數(shù)可知點B在數(shù)軸上,然后進行計算即可得解.【解答】解:如圖,由題意可得,每3次翻轉(zhuǎn)為一個循環(huán)組依次循環(huán),∵100÷3=33…1,∴翻轉(zhuǎn)100次后點B在數(shù)軸上,∴點B對應的數(shù)是33×3+1=100.故選:C.【點評】本題考查了數(shù)軸以及變化類:數(shù)的變化,根據(jù)點的變化,找出變化規(guī)律是解題的關(guān)鍵.8.(2021秋?平陽縣期中)數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度為1cm,若在數(shù)軸上畫出一條長2020cm的線段AB,則線段AB蓋住的整點個數(shù)是()A.2020 B.2021 C.2020或2021 D.2019或2020【分析】某數(shù)軸的單位長度是1厘米,若在這個數(shù)軸上隨意畫出一條長為2020cm的線段AB,則線段AB蓋住的整點的個數(shù)可能正好是2021個,也可能不是整數(shù),而是有兩個半數(shù)那就是2020個.【解答】解:依題意得:①當線段AB起點在整點時覆蓋2021個數(shù),②當線段AB起點不在整點,即在兩個整點之間時覆蓋2020個數(shù),綜上所述,蓋住的點為:2020或2021.故選:C.【點評】此題考查了數(shù)軸,在學習中要注意培養(yǎng)學生數(shù)形結(jié)合的思想,注意不要遺漏.9.(2021秋?鎮(zhèn)海區(qū)校級期中)在數(shù)軸上,已知在紙面上有一數(shù)軸(如圖),折疊紙面.(1)若1表示的點與﹣1表示的點重合,則﹣2表示的點與何數(shù)表示的點重合;(2)若﹣1表示的點與5表示的點重合,0表示的點與何數(shù)表示的點重合;(3)若﹣1表示的點與5表示的點之間的線段折疊2次,展開后,請寫出所有的折點表示的數(shù)?【分析】(1)根據(jù)對稱的知識,若1表示的點與﹣1表示的點重合,則對稱中心是原點,從而找到﹣2的對稱點;(2)若數(shù)﹣1表示的點與數(shù)5表示的點重合,則對稱中心是2表示的點,從而找到0的對稱點;根據(jù)對應點連線被對稱中心平分,先找到對稱中心,再找到點表示的數(shù);從而求解;(3)先得到﹣1與5的對稱點是2,第二次對折得到兩個對稱點是0.5和3.5.【解答】解:(1)若1表示的點與﹣1表示的點重合,則﹣2表示的點與2表示的點重合;(2)若﹣1表示的點與5表示的點重合,0表示的點與4表示的點重合;(3)若﹣1表示的點與5表示的點之間的線段折疊2次,展開后,所有的折點表示的數(shù)0.5,2,3.5.【點評】此題綜合考查了數(shù)軸上的點和數(shù)之間的對應關(guān)系以及中心對稱的性質(zhì).注意:數(shù)軸上折點到兩點的距離相等.10.(2021秋?諸暨市期中)已知點A在數(shù)軸上對應的數(shù)為a,點B在數(shù)軸上對應的數(shù)為b,且|a+3|+|b﹣2|=0,A、B之間的距離記為|AB|=|a﹣b|或|b﹣a|,請回答問題:(1)直接寫出a,b,|AB|的值,a=﹣3,b=2,|AB|=5.(2)設點P在數(shù)軸上對應的數(shù)為x,若|x﹣3|=5,則x=8或﹣2.(3)如圖,點M,N,P是數(shù)軸上的三點,點M表示的數(shù)為4,點N表示的數(shù)為﹣1,動點P表示的數(shù)為x.①若點P在點M、N之間,則|x+1|+|x﹣4|=5;②若|x+1|+|x﹣4|=10,則x=﹣3.5或6.5;③若點P表示的數(shù)是﹣5,現(xiàn)在有一螞蟻從點P出發(fā),以每秒1個單位長度的速度向右運動,當經(jīng)過多少秒時,螞蟻所在的點到點M、點N的距離之和是8?【分析】(1)根據(jù)絕對值的非負性可得答案;(2)分x在3的左側(cè)和右側(cè)兩種情況;(3)①由題意可得﹣1<x<4,化簡絕對值可得答案;②分x<﹣1或x>4兩種情況解答;③分點P在N的左側(cè)和M的右側(cè)兩種情況解答.【解答】解:(1)∵|a+3|+|b﹣2|=0,∴a+3=0,b﹣2=0,∴a=﹣3,b=2,AB=|﹣3﹣2|=5;故答案為:﹣3,2,5.(2)∵|x﹣3|=5,∴x﹣3=±5,∴x=8或﹣2;故答案為:8或﹣2.(3)①由題意得,﹣1<x<4,∴|x+1|+|x﹣4|=x+1+4﹣x=5,故答案為:5;②∵|x+1|+|x﹣4|=10,∴x<﹣1或x>4,當x<﹣1時,|x+1|+|x﹣4|=﹣x﹣1+4﹣x=3﹣2x,即3﹣2x=10,解得x=﹣3.5;當x>4時,|x+1|+|x﹣4|=x+1+x﹣4=2x﹣3,即2x﹣3=10,解得x=6.5;故答案為:﹣3.5或6.5;③t秒后,點P表示的數(shù)是t﹣5,NP=|t﹣5+1|=|t﹣4|,MP=|t﹣5﹣4|=|t﹣9|,當t﹣5<﹣1時,|t﹣4|+|t﹣9|=4﹣t+9﹣t=13﹣2t=8,解得t=2.5,當t﹣5>4時,|t﹣4|+|t﹣9|=t﹣4+t﹣9=2t﹣13=8,解得t=10.5,答:經(jīng)過2.5秒或10.5秒時,螞蟻所在的點到點M、點N的距離之和是8.【點評】本題考查數(shù)軸上兩點間的距離,熟練的掌握求兩點間距離的方法是解題關(guān)鍵.四.相反數(shù)(共2小題)11.(2021秋?永嘉縣期中)2021的相反數(shù)是()A.2021 B.﹣2021 C. D.【分析】只有符號不同的兩個數(shù)互為相反數(shù).求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前面添加“﹣”.【解答】解:2021的相反數(shù)是﹣2021,故選:B.【點評】本題考查了相反數(shù)的定義,牢記相反數(shù)的定義是解題的關(guān)鍵.12.(2021秋?蕭山區(qū)期中)下列各數(shù)中,5的相反數(shù)是()A.﹣5 B.5 C.﹣ D.【分析】根據(jù)相反數(shù)的概念可以直接得到答案.【解答】解:只有符號不同的兩個數(shù)叫做互為相反數(shù),互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等.所以5的相反數(shù)是﹣5.故選:A.【點評】本題主要考查相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù),互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等.五.絕對值(共5小題)13.(2021秋?諸暨市期中)﹣2的絕對值是()A.2 B.﹣2 C. D.﹣【分析】根據(jù)負數(shù)的絕對值等于它的相反數(shù)解答.【解答】解:﹣2的絕對值是2,即|﹣2|=2.故選:A.【點評】本題考查了絕對值的性質(zhì):正數(shù)的絕對值是它本身;負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.14.(2021秋?慈溪市期中)|a|=1,|b|=4,且ab<0,則a+b的值為()A.3 B.﹣3 C.±3 D.±5【分析】根據(jù)題意,因為ab<0,確定a、b的取值,再求得a+b的值.【解答】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1﹣4=﹣3或a+b=﹣1+4=3,故選:C.【點評】本題主要考查了絕對值的運算,先根據(jù)題意確定絕對值符號中數(shù)的正負再計算結(jié)果,比較簡單.15.(2021秋?西湖區(qū)校級期中)已知:|x|=3,|y|=5,且xy<0,則x+y=2或﹣2..【分析】xy<0即x,y異號,再根據(jù)絕對值的定義以及求得x,y的值,代入x+y即可求得代數(shù)式的值.【解答】解:∵|x|=3,|y|=5∴x=±3,y=±5,∵xy<0,即x,y異號,∴x=3,y=﹣5或x=﹣3,y=5,當x=3,y=﹣5時,x+y=3﹣5=﹣2;當x=﹣3,y=5時,x+y=﹣3+5=2.故答案是:2或﹣2.【點評】本題考查了絕對值的定義以及有理數(shù)的乘法法則:同號得正,異號得負,正確確定x,y的值是關(guān)鍵.16.(2021秋?西湖區(qū)校級期中)若實數(shù)a、b、c滿足|a﹣b|=1,|a﹣c|=7,則|b﹣c|的值為()A.6 B.7 C.6或8 D.6或7【分析】根據(jù)條件得:a﹣b=±1,a﹣c=±7,然后分四種情況分別計算即可.【解答】解:∵|a﹣b|=1,|a﹣c|=7,∴a﹣b=±1,a﹣c=±7,當a﹣b=1,a﹣c=7時,b﹣c=a﹣c﹣(a﹣b)=7﹣1=6,原式=6;當a﹣b=﹣1,a﹣c=﹣7時,b﹣c=a﹣c﹣(a﹣b)=﹣7+1=﹣6,原式=6;當a﹣b=1,a﹣c=﹣7時,b﹣c=a﹣c﹣(a﹣b)=﹣7﹣1=﹣8,原式=8;當a﹣b=﹣1,a﹣c=7時,b﹣c=a﹣c﹣(a﹣b)=7+1=8,原式=8;故選:C.【點評】本題考查了絕對值的定義,體現(xiàn)了分類討論的數(shù)學思想,分類做到不重不漏是解題的關(guān)鍵.17.(2021秋?諸暨市期中)對于一個數(shù)x,我們用(x]表示小于x的最大整數(shù),例如:(2.6]=2,(﹣3]=﹣4.(1)填空:(10]=9.(﹣2019]=﹣2020,(]=0;(2)若a,b都是整數(shù),且(a]和(b]互為相反數(shù),求代數(shù)式a﹣(a+b)×3+b的值;(3)若|(x]|+|(x﹣2]|=6,求x的取值范圍.【分析】(1)根據(jù)(x]表示的意義,這個進行計算即可;(2)根據(jù)a,b都是整數(shù),且(a]和(b]互為相反數(shù),得到a+b=2,進而求值即可;(3)分原點在表示數(shù)x的點的右側(cè)和在表示數(shù)x﹣2數(shù)的左側(cè)兩種情況進行解答.【解答】解:(1)根據(jù)(x]表示的意義得,(10]=9,(﹣2019]=﹣2020,(]=0,故答案為:9,﹣2020,0;(2)∵a,b都是整數(shù),∴(a]=a﹣1,(b]=b﹣1,而(a]和(b]互為相反數(shù),∴a﹣1+b﹣1=0,即a+b=2,因此a﹣(a+b)×3+b=a﹣3a﹣3b+b=﹣2(a+b)=﹣4,答:代數(shù)式a﹣(a+b)×3+b的值為﹣4;(3)當原點在大數(shù)的右側(cè)時,有(x]=﹣2,此時,﹣2<x≤﹣1,當原點在小數(shù)的左側(cè)時,有(x]=4,此時,4<x≤5,故x的取值范圍為﹣2<x≤﹣1或4<x≤5.【點評】本題考查絕對值、相反數(shù)的意義,理解(x]的意義是正確解答的關(guān)鍵.六.倒數(shù)(共1小題)18.(2021秋?鄞州區(qū)校級期中)﹣的倒數(shù)是()A. B.﹣ C. D.﹣【分析】直接利用倒數(shù)的定義得出答案.【解答】解:﹣的倒數(shù)是:﹣.故選:B.【點評】此題主要考查了倒數(shù),正確把握倒數(shù)的定義是解題關(guān)鍵.七.有理數(shù)大小比較(共3小題)19.(2021秋?義烏市期中)有理數(shù)a、b在數(shù)軸上的位置如圖所示,那么a、﹣a、b、﹣b的大小關(guān)系是()A.﹣a<a<b<﹣b B.a(chǎn)<﹣a<b<﹣b C.﹣b<a<﹣a<b D.b<﹣b<a<﹣a【分析】根據(jù)a、b兩點在數(shù)軸上的位置判斷出其大小,再用“<”連接起來即可.【解答】解:∵由圖可知,a<0<b,|a|<b,∴﹣b<a<﹣a<b,故選:C.【點評】本題考查的是有理數(shù)的大小比較,熟知數(shù)軸上右邊的數(shù)總比左邊的大是解答此題的關(guān)鍵.20.(2021秋?鎮(zhèn)海區(qū)校級期中)若﹣1<a<0,則a,,a2由小到大排列正確的是()A.a(chǎn)2<a< B.a(chǎn)<<a2 C.<a<a2 D.a(chǎn)<a2<【分析】根據(jù)a的取值范圍,可給a賦值,從大到小排列后即可得出答案.【解答】解:令a=﹣,則=﹣2,a2=,∵﹣2<﹣<,∴<a<a2.故選:C.【點評】本題考查了有理數(shù)的大小比較,解答此題的關(guān)鍵是掌握“賦值法”的運用.21.(2021秋?新昌縣期中)大于﹣3.1而小于2的整數(shù)有5個.【分析】根據(jù)題意畫出數(shù)軸,在數(shù)軸上標出﹣3.1和2兩個點,便可直接求出符合條件的整數(shù).【解答】解:畫出數(shù)軸并標出各點,如圖:由圖可知,符合條件的整數(shù)有﹣3,﹣2,﹣1,0,1共5個.故填5.【點評】本題考查的是有理數(shù)的大小比較,引進了數(shù)軸,數(shù)和形結(jié)合起來,使問題更簡單化.八.有理數(shù)的加法(共2小題)22.(2021秋?平陽縣期中)計算:﹣3+2的結(jié)果是()A.﹣1 B.﹣5 C.1 D.5【分析】根據(jù)有理數(shù)加法法則計算即可得到答案.【解答】解:﹣3+2=﹣(3﹣2)=﹣1,故選:A.【點評】本題主要考查有理數(shù)的加法,解題的關(guān)鍵是掌握加法運算法則.23.(2021秋?越城區(qū)期中)王先生到市行政中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作﹣1,王先生從1樓出發(fā),電梯上下樓層依次記錄如下(單位:層):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)請你通過計算說明王先生最后是否回到出發(fā)點1樓.(2)該中心大樓每層高3m,電梯每向上或下1m需要耗電0.2度,根據(jù)王先生現(xiàn)在所處位置,請你算算,他辦事時電梯需要耗電多少度?【分析】(1)把上下樓層的記錄相加,根據(jù)有理數(shù)的加法運算法則進行計算,如果等于0則能回到1樓,否則不能;(2)求出上下樓層所走過的總路程,然后乘以0.2即可得解.【解答】解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出發(fā)點1樓;(2)王先生走過的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他辦事時電梯需要耗電168×0.2=33.6(度).【點評】本題主要考查了有理數(shù)的加法運算,(2)中注意要求出上下樓層的絕對值,而不是利用(1)中的結(jié)論求解,這是本題容易出錯的地方.九.有理數(shù)的減法(共1小題)24.(2021秋?濱江區(qū)校級期中)1﹣π的相反數(shù)是π﹣1.【分析】根據(jù)相反數(shù)的定義即可得到結(jié)論.【解答】解:1﹣π的相反數(shù)是﹣(1﹣π)=π﹣1.故答案為:π﹣1.【點評】本題考查了相反數(shù)的定義,熟記定義是解題的關(guān)鍵.一十.有理數(shù)的加減混合運算(共2小題)25.(2021秋?長興縣期中)已知[x]表示不超過x的最大整數(shù).如:[3.2]=3,[﹣0.7]=﹣1.現(xiàn)定義:{x}=[x]﹣x,如{1.5}=[1.5]﹣1.5=﹣0.5,則{3.9}+{﹣}﹣{1}=﹣1.4.【分析】根據(jù)題意列式解答即可.【解答】解:根據(jù)題意可得{3.9}+{﹣}﹣{1}=(3﹣3.9)+[(﹣2)﹣(﹣1.5)]﹣(1﹣1)=﹣0.9+(﹣0.5)=﹣1.4.故答案為:﹣1.4.【點評】此題主要考查了有理數(shù)大小的比較,解題的關(guān)鍵是能夠根據(jù)題意列出正確的算式進行解答.26.(2021秋?慈溪市期中)小林的父親上星期六買進某公司股票1000股,每股27元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)星期一二三四五六每股漲跌+4+4.5﹣1﹣2.5﹣6+2(1)星期三收盤時,每股多少元?(2)本周內(nèi)最高價是每股多少元?最低價是每股多少元?(3)已知小林的父親買進股票時付了1.5‰的手續(xù)費,賣出時須付總金額1.5‰的手續(xù)費和1‰的交易稅,如果他在周六收盤前將股票全部賣出,他的收益情況如何?【分析】先理解上漲用“+”表示,下降用“﹣”表示,根據(jù)題意列出式子計算即可;周六的收益=周六每股的價錢×1000×(1﹣1.5‰﹣1‰)﹣27×1000×(1+1.5‰).【解答】解:(1)27+4+4.5﹣1=34.5元;(2)最高=27+4+4.5=35.5元,最低=34.5﹣2.5﹣6=26元;(3)周六每股的價錢=26+2=28元,收益情況=28×1000×(1﹣1.5‰﹣1‰)﹣27×1000×(1+1.5‰)=889.5元.【點評】本題考查的是有理數(shù)的加減混合運算,注意相反意義的量的理解、等式的利用.一十一.有理數(shù)的乘法(共2小題)27.(2021秋?諸暨市期中)如圖所示,數(shù)軸上的A、B、C三點所表示的數(shù)分別為a、b、c,則下列式子正確的是()A.a(chǎn)c>0 B.c+a>0 C.﹣a<﹣b D.>0【分析】根據(jù)有理數(shù)a、b、c在數(shù)軸上的位置可知a、b、c的符號和絕對值的大小,進而逐項判斷即可.【解答】解:由有理數(shù)a、b、c在數(shù)軸上的位置可知,c<﹣1<0<a<1<b,且|c|>|a|,|b|>|a|,∴ac<0,因此選項A不符合題意;c+a<0,因此選項B不符合題意;﹣a>﹣b,因此選項C不符合題意;>0,因此選項D符合題意;故選:D.【點評】本題考查數(shù)軸表示數(shù),有理數(shù)的運算,掌握有理數(shù)的計算法則是正確計算的前提,根據(jù)有理數(shù)a、b、c在數(shù)軸上的位置可知a、b、c的符號和絕對值的大小,是正確解答的關(guān)鍵.28.(2021秋?北侖區(qū)期中)絕對值不大于4.5的所有整數(shù)的和為0,積為0.【分析】計算絕對值要根據(jù)絕對值的定義求解,不要遺忘符合條件的負數(shù).符合條件的數(shù)為,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4.【解答】解:絕對值不大于4.5的整數(shù)為:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,求和:﹣4﹣3﹣2﹣1+0+1+2+3+4=0.求積:0.故本題的答案都是0.【點評】關(guān)鍵是注意絕對值不大于4.5的所有整數(shù)中的0,任何數(shù)同0相乘得0.一十二.有理數(shù)的混合運算(共4小題)29.(2021秋?諸暨市期中)如圖所示是計算機某計算程序,若開始輸入x=2,則最后輸出的結(jié)果是22.【分析】把x=2代入程序中計算得到結(jié)果,判斷結(jié)果與10大小,依此類推即可得到最后輸出的結(jié)果.【解答】解:把x=2代入程序中得:2×4﹣2=8﹣2=6<10,把x=6代入程序中得:6×4﹣2=24﹣2=22>10,則最后輸出的結(jié)果是22.故答案為:22.【點評】此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.30.(2021秋?諸暨市期中)有20箱蘋果,以每箱15千克為標準,超過15千克的數(shù)記為正數(shù),不足15千克的數(shù)記為負數(shù),稱重記錄如下:與標準質(zhì)量的差(千克)﹣0.5﹣0.4﹣0.20+0.2+0.3+0.6箱數(shù)(箱)2152424(1)最重的一箱比最輕的一箱重1.1千克;(2)求這20箱蘋果的總質(zhì)量;(3)若這批蘋果的批發(fā)價是8.5元/千克,售價是15元/千克,運輸和出售過程中有10%的蘋果腐爛無法出售,則出售這20箱蘋果能盈利多少元?【分析】(1)用最重的一箱的質(zhì)量減去最輕的一箱的質(zhì)量即可;(2)根據(jù)有理數(shù)的加法運算以及正負數(shù)的意義即可求出答案;(3)計算出每一箱的平均重量,然后求出總收入和總支出即可.【解答】解:(1)+0.6﹣(﹣0.5)=0.6+0.5=1.1(千克),即最重的一箱比最輕的一箱重1.1千克,故答案為:1.1;(2)根據(jù)題意可知:2×(﹣0.5)+1×(﹣0.4)+5×(﹣0.2)+2×0+4×0.2+2×0.3+4×0.6=1.4(千克),∴20箱蘋果的總重量為:20×15+1.4=301.4(千克);(3)301.4×(1﹣10%)×15﹣301.4×8.5=1507(元),答:出售這20箱蘋果能盈利1507元.【點評】本題考查正數(shù)與負數(shù),解題的關(guān)鍵是正確理解正數(shù)與負數(shù)的意義以及熟練運用有理數(shù)的加法,本題屬于基礎題型.31.(2021秋?長興縣期中)如圖,某學?!疤依畈蛷d”把WIFI密碼做成了數(shù)學題.小紅在餐廳就餐時,思索了一會兒,輸入密碼,順利地連接到了“桃李餐廳”的網(wǎng)絡.那么她輸入的密碼是244872.【分析】根據(jù)前面三個等式,尋找規(guī)律解決問題.【解答】解:由三個等式,得到規(guī)律:5*3⊕6=301848可知:5×63×66×(5+3),2*6⊕7=144256可知:2×76×77×(2+6),9*2⊕5=451055可知:9×52×55×(9+2),∴4*8⊕6=4×68×66×(4+8)=244872.故答案為:244872.【點評】本題考查了有理數(shù)的混合運算,由前面三個等式發(fā)現(xiàn)規(guī)律是解題的關(guān)鍵.32.(2021秋?龍灣區(qū)期中)小明有5張寫著以下數(shù)字的卡片,請你按要求抽出卡片,完成下列各題.(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是6.(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最小,最小值是﹣2.(3)從中取出除0以外的4張卡片,將這4個數(shù)字進行加、減、乘、除或乘方等混合運算,使結(jié)果為24,(注:每個數(shù)字只能用一次,如:23×[1﹣(﹣2)]=8×3=24),請另寫出一種符合要求的運算式子(﹣2)3×[﹣(2+1)]=24.【分析】(1)找出+3與+2,使其乘積最大即可;(2)找出+3與﹣2,使其商最小即可;(3)利用“24點”游戲規(guī)則寫出兩個符合要求的式子即可.【解答】解:(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是6;(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最小,最小值是﹣2;(3)從中取出除0以外的4張卡片,將這4個數(shù)字進行加、減、乘、除或乘方等混合運算,使結(jié)果為24,(注:每個數(shù)字只能用一次,如:23×[1﹣(﹣2)]=8×3=24),請另寫出兩種符合要求的運算式子(﹣2)3×[﹣(2+1)]=24;故答案為:(1)6;(2)﹣2;(3)(﹣2)3×[﹣(2+1)]=24【點評】此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.一十三.近似數(shù)和有效數(shù)字(共1小題)33.(2021秋?諸暨市期中)用四舍五入法對0.06045取近似值,錯誤的是()A.0.1(精確到0.1) B.0.06(精確到百分位) C.0.061(精確到千分位) D.0.0605(精確到0.0001)【分析】取近似數(shù)的時候,即精確到哪一位,只需對下一位的數(shù)字四舍五入.即可得出結(jié)論.【解答】解:A.0.06045精確到0.1為0.1,此選項正確,不符合題意;B.0.06045精確到百分位為0.06,此選項正確,不符合題意;C.0.06045精確到千分位為0.060,此選項錯誤,符合題意;D.0.06045精確到0.0001為0.0605,此選項正確,不符合題意;故選:C.【點評】本題考查近似數(shù),近似數(shù)與精確數(shù)的接近程度,可以用精確度表示.一般有,精確到哪一位,保留幾個有效數(shù)字等說法.一十四.科學記數(shù)法—表示較大的數(shù)(共1小題)34.(2021秋?平陽縣期中)在過去的2020年,中國成為全球唯一實現(xiàn)經(jīng)濟正增長的主要經(jīng)濟體,GDP達到約152200億美元.數(shù)字152200用科學記數(shù)法可表示為()A.0.1522×106 B.1.522×105 C.1522×102 D.1.522×104【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥10時,n是正整數(shù);當原數(shù)的絕對值<1時,n是負整數(shù).【解答】解:152200=1.522×105.故選:B.【點評】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要確定a的值以及n的值.一十五.平方根(共2小題)35.(2021秋?義烏市期中)已知一個正數(shù)x的兩個平方根分別是2a﹣2和a﹣4,則a=2,x=4.【分析】根據(jù)一個正數(shù)的平方根有2個,且互為相反數(shù)列出方程,求出方程的解得到a的值,即可確定出x的值.【解答】解:根據(jù)題意得:2a﹣2+a﹣4=0,解得:a=2,則x=(2﹣4)2=4.故答案為:2;4.【點評】此題考查了平方根,熟練掌握平方根的定義是解本題的關(guān)鍵.36.(2021秋?鄞州區(qū)校級期中)已知某數(shù)的一個平方根是,那么這個數(shù)是11,它的另一個平方根是﹣.【分析】根據(jù)平方根的平方等于被開方數(shù),可得答案,根據(jù)一個正數(shù)的平方根互為相反數(shù),可得答案.【解答】解:某數(shù)的一個平方根是,那么這個數(shù)是11,它的另一個平方根是﹣,故答案為:11,﹣.【點評】本題考查了平方根,注意一個正數(shù)的兩個平方根互為相反數(shù).一十六.算術(shù)平方根(共2小題)37.(2021秋?新昌縣期中)如圖是5×5方格子(每個小正方格的邊長為1個單位長度),圖中陰影部分是正方形,則此正方形的邊長為()A.3 B. C. D.5【分析】根據(jù)每一個小方格都是邊長為1個單位長度的正方形,再根據(jù)勾股定理,列出算式,即可得出答案.【解答】解:根據(jù)題意得:陰影正方形的邊長是:;故選:C.【點評】此題考查了算術(shù)平方根,用到的知識點是算術(shù)平方根的求法和勾股定理,關(guān)鍵是根據(jù)勾股定理列出算式.38.(2021秋?諸暨市期中)16的算術(shù)平方根為()A.±4 B.4 C.2 D.±2【分析】根據(jù)算術(shù)平方根的定義即可求出結(jié)果.【解答】解:∵42=16,∴=4.故選:B.【點評】此題主要考查了算術(shù)平方根的定義.一個正數(shù)的算術(shù)平方根就是其正的平方根.一十七.立方根(共1小題)39.(2021秋?慈溪市期中)已知=1.147,=2.472,=0.5325,則的值是11.47.【分析】根據(jù)被開方數(shù)擴大1000倍,立方根擴大10倍,可得答案.【解答】解:已知=1.147,∴=11.47,故答案為:11.47.【點評】本題考查了立方根,被開方數(shù)擴大1000倍,立方根擴大10倍.一十八.無理數(shù)(共1小題)40.(2021秋?長興縣期中)在0,,﹣0.101001,π,中無理數(shù)的個數(shù)是1個.【分析】無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).【解答】解:0,,是整數(shù),屬于有理數(shù);是分數(shù),屬于有理數(shù);﹣0.101001是有限小數(shù),屬于有理數(shù);無理數(shù)有π,共1個.故答案為:1.【點評】此題考查了無理數(shù)的定義.解題的關(guān)鍵是掌握無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).如π,,0.8080080008…(每兩個8之間依次多1個0)等形式.一十九.實數(shù)的性質(zhì)(共1小題)41.(2021秋?鄞州區(qū)期中)已知a,b為實數(shù),下列說法:①若ab<0,且a,b互為相反數(shù),則=﹣1;②若a+b<0,ab>0,則|2a+3b|=﹣2a﹣3b;③若|a﹣b|+a﹣b=0,則b>a;④若|a|>|b|,則(a+b)×(a﹣b)是正數(shù);⑤若a<b,ab<0且|a﹣3|<|b﹣3|,則a+b>6,其中正確的說法有()個.A.2 B.3 C.4 D.5【分析】①除0外,互為相反數(shù)的商為﹣1,可作判斷;②由兩數(shù)之和小于0,兩數(shù)之積大于0,得到a與b都為負數(shù),即2a+3b小于0,利用負數(shù)的絕對值等于它的相反數(shù)化簡得到結(jié)果,即可作出判斷;③由a﹣b的絕對值等于它的相反數(shù),得到a﹣b為非正數(shù),得到a與b的大小,即可作出判斷;④由a絕對值大于b絕對值,分情況討論,即可作出判斷;⑤先根據(jù)a<b,得a﹣3<b﹣3,由ab<0和有理數(shù)乘法法則可得a<0,b>0,分情況可作判斷.【解答】解:①若ab<0,且a,b互為相反數(shù),則=﹣1,本選項正確;②若ab>0,則a與b同號,由a+b<0,則a<0,b<0,則|2a+3b|=﹣2a﹣3b,本選項正確;③∵|a﹣b|+a﹣b=0,即|a﹣b|=﹣(a﹣b),∴a﹣b≤0,即a≤b,本選項錯誤;④若|a|>|b|,當a>0,b>0時,可得a>b,即a﹣b>0,a+b>0,所以(a+b)?(a﹣b)為正數(shù);當a>0,b<0時,a﹣b>0,a+b>0,所以(a+b)?(a﹣b)為正數(shù);當a<0,b>0時,a﹣b<0,a+b<0,所以(a+b)?(a﹣b)為正數(shù);當a<0,b<0時,a﹣b<0,a+b<0,所以(a+b)?(a﹣b)為正數(shù),本選項正確;⑤∵a<b,∴a﹣3<b﹣3,∵ab<0,∴a<0,b>0,當0<b<3時,|a﹣3|<|b﹣3|,∴3﹣a<3﹣b,不符合題意;所以b≥3,|a﹣3|<|b﹣3|,∴3﹣a<b﹣3,則a+b>6,本選項正確;則其中正確的有4個,是①②④⑤.故選:C.【點評】此題考查了相反數(shù),絕對值和有理數(shù)的混合運算,熟練掌握各種運算法則是解本題的關(guān)鍵.二十.實數(shù)與數(shù)軸(共3小題)42.(2021秋?新昌縣期中)實數(shù)a,b在數(shù)軸上的位置如圖所示,則下面的關(guān)系式中正確的個數(shù)為()①a+b>0;②b﹣a>0;③>;④|a|<|b|A.1 B.2 C.3 D.4【分析】根據(jù)數(shù)軸上點的位置,可得a,b的關(guān)系,根據(jù)有理數(shù)的運算,可得答案.【解答】解:由題意,得b<0<a,|b|>|a|.①a+b<0故①錯誤;②b﹣a<0,故②錯誤;③>,故③正確;④|a|<|b|,故④正確;故選:B.【點評】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上點的位置得出a,b的關(guān)系是解題關(guān)鍵.43.(2021秋?鎮(zhèn)海區(qū)校級期中)如圖,以數(shù)軸的單位長度線段為邊長作一個正方形,以表示數(shù)2的點為圓心,正方形對角線長為半徑畫半圓,交數(shù)軸于點A和點B,則點A表示的數(shù)是2﹣.【分析】先求出單位正方形的對角線的長,設點A表示的數(shù)為x,則2﹣x=單位正方形的對角線的長,求出x即可.【解答】解:如圖:由題意可知:CD=CA==,設點A表示的數(shù)為x,則:2﹣x=x=2﹣即:點A表示的數(shù)為2﹣故:答案為2﹣【點評】本題考查了實數(shù)與數(shù)軸的有關(guān)問題,解題的關(guān)鍵是利用勾股定理求出AC的長.44.(2021秋?西湖區(qū)校級期中)數(shù)軸是一個非常重要的數(shù)學工具,它使數(shù)和數(shù)軸上的點建立起對應關(guān)系,揭示了數(shù)與點之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎.小白在草稿紙上畫了一條數(shù)軸進行操作探究:操作一:(1)折疊紙面,若使表示的點1與﹣1表示的點重合,則﹣2表示的點與2表示的點重合;操作二:(2)折疊紙面,若使1表示的點與﹣3表示的點重合,回答以下問題:①表示的點與數(shù)﹣2﹣表示的點重合;②若數(shù)軸上A、B兩點之間距離為8(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,則A、B兩點表示的數(shù)分別是﹣5和3;操作三:(3)在數(shù)軸上剪下9個單位長度(從﹣1到8)的一條線段,并把這條線段沿某點折疊,然后在重疊部分某處剪一刀得到三條線段(如圖).若這三條線段的長度之比為1:1:2,則折痕處對應的點所表示的數(shù)可能是或或.【分析】(1)根據(jù)對稱性找到折痕的點為原點O,可以得出﹣2與2重合;(2)根據(jù)對稱性找到折痕的點為﹣1,①設表示的點與數(shù)a表示的點重合,根據(jù)對稱性列式求出a的值;②因為AB=8,所以A到折痕的點距離為4,因為折痕對應的點為﹣1,由此得出A、B兩點表示的數(shù);(3)分三種情況進行討論:設折痕處對應的點所表示的數(shù)是x,如圖1,當AB:BC:CD=1:1:2時,所以設AB=a,BC=a,CD=2a,得a+a+2a=9,a=,得出AB、BC、CD的值,計算也x的值,同理可得出如圖2、3對應的x的值.【解答】解:操作一,(1)∵表示的點1與﹣1表示的點重合,∴折痕為原點O,則﹣2表示的點與2表示的點重合,故答案為:2;操作二:(2)∵折疊紙面,若使1表示的點與﹣3表示的點重合,則折痕表示的點為﹣1,①設表示的點與數(shù)a表示的點重合,則﹣(﹣1)=﹣1﹣a,a=﹣2﹣;②∵數(shù)軸上A、B兩點之間距離為8,∴數(shù)軸上A、B兩點到折痕﹣1的距離為4,∵A在B的左側(cè),則A、B兩點表示的數(shù)分別是﹣5和3;故答案為:①﹣2﹣,②﹣5和3;操作三:(3)設折痕處對應的點所表示的數(shù)是x,如圖1,當AB:BC:CD=1:1:2時,設AB=a,BC=a,CD=2a,a+a+2a=9,a=,∴AB=,BC=,CD=,x=﹣1++=,如圖2,當AB:BC:CD=1:2:1時,設AB=a,BC=2a,CD=a,a+a+2a=9,a=,∴AB=,BC=,CD=,x=﹣1++=,如圖3,當AB:BC:CD=2:1:1時,設AB=2a,BC=a,CD=a,a+a+2a=9,a=,∴AB=,BC=CD=,x=﹣1++=,綜上所述:則折痕處對應的點所表示的數(shù)可能是或或.故答案為:或或.【點評】本題考查了實數(shù)和數(shù)軸的關(guān)系,及數(shù)軸上的折疊變換問題,明確①數(shù)軸上折疊后重合的點到折痕的距離相等,②數(shù)軸上任意兩點的距離為兩點坐標的絕對值;本題第三問有難度,采用了分類討論的思想.二十一.實數(shù)大小比較(共1小題)45.(2021秋?西湖區(qū)校級期中)在數(shù)軸上近似地表示下列各數(shù),并把它們按從小到大的順序排列,用“<”連接:,﹣|﹣2|,π,﹣(﹣4).【分析】在數(shù)軸上分別表示出各點,然后根據(jù)在數(shù)軸上右邊的數(shù)總比左邊的大來比較大?。窘獯稹拷猓簲?shù)軸如圖所示,∴由小到大的順序排列為:﹣|﹣2|<0<<π<﹣(﹣4).【點評】本題考查了實數(shù)的大小比較,解題的關(guān)鍵是在數(shù)軸上右邊的數(shù)總比左邊的大.二十二.估算無理數(shù)的大?。ü?小題)46.(2021秋?新昌縣期中)估算﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間【分析】估算得出的范圍,即可求出所求.【解答】解:∵9<13<16,∴3<<4,則2<﹣1<3,故選:B.【點評】此題考查了無理數(shù)的估算方法,弄清無理數(shù)的估算方法是解本題的關(guān)鍵.二十三.列代數(shù)式(共2小題)47.(2021秋?下城區(qū)校級期中)一種商品每件成本a元,按成本增加22%標價.(1)每件標價多少元?(2)由于庫存積壓,實際按標價的九折出售,每件是盈利還是虧損?盈利或虧損多少元?【分析】(1)利用成本×(1+22%)可得標價;(2)利用標價×九折可得售價,再與進價比較即可.【解答】解:(1)標價為:(1+22%)a=1.22a(元),答:每件標價1.22a元;(2)1.22a×0.9=1.098a,∵1.098a>a,∴盈利,盈利0.098a元.【點評】此題主要考查了列代數(shù)式,關(guān)鍵是掌握成本、利潤率、標價、打折、售價之間的關(guān)系.48.(2021秋?下城區(qū)校級期中)從2012年7月1日起某市執(zhí)行新版居民階梯電價,小明同學家收到了新政后的第一張電費單,小明爸爸說:“小明,請你計算一下,這個月的電費支出與新政前相比是多了還是少了?”于是小明上網(wǎng)了解了有關(guān)電費的收費情況,得到如下兩表:2004年1月至2012年6月執(zhí)行的收費標準:月用電量(度)50度有以下部分超過50度但不超過200度部分超過200度以上部分單價(元/度)0.530.560.632012年7月起執(zhí)行的收費標準:月用電量(度)230度有以下部分超過230度但不超過400度部分超過400度以上部分單價(元/度)0.530.580.83(1)若小明家2012年7月份的用電量為200度,則小明家7月份的電費支出是多少元?比新政前少了多少元?(2)若新政后小明家的月用電量為a度,請你用含a的代數(shù)式表示當月的電費支出.【分析】(1)根據(jù)表格中的數(shù)據(jù)可以計算出小明家2012年7月份的用電量為200度時當月的電費支出和新政前用電量為200度時當月的電費支出,從而可以解答本題;(2)根據(jù)表格中的數(shù)據(jù)可以分別用代數(shù)式表示出各個階段的電費支出.【解答】解:(1)由題意可得,小明家2012年7月份的用電量為200度,小明家7月份的電費支出是:200×0.53=106(元),新政前,用電200度電費支出為:50×0.53+(200﹣50)×0.56=110.5(元),∵110.5﹣106=4.5(元),∴新政后比新政前少華4.5元,即若小明家2012年7月份的用電量為200度,則小明家7月份的電費支出是106元,比新政前少了4.5元;(2)由題意可得,當0≤a≤230時,小明家當月的電費支出為:0.53a,當230<a≤400時,小明家當月的電費支出為:0.53×230+(a﹣230)×0.58=0.58a﹣11.5,當a>400時,小明家當月的電費支出為:0.53×230+0.58×(400﹣230)+0.83×(a﹣400)=0.83a﹣111.5,由上可得,新政后小明家的月用電量為a度,當月支出的費用為:.【點評】本題考查列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應的代數(shù)式.二十四.代數(shù)式求值(共3小題)49.(2021秋?平陽縣期中)如圖,從一個長方形鐵皮中剪去一個小正方形.(1)請你用含有a、b的式子表示陰影部分的面積;(2)當a=7米,b=2米時,求陰影部分的面積.【分析】(1)由大矩形面積減去正方形面積表示出陰影部分面積即可;(2)把a與b的值代入計算即可求出所求.【解答】解:(1)根據(jù)題意得:(a+b)(2a+b)﹣a2=2a2+ab+2ab+b2﹣a2=a2+3ab+b2;(2)當a=7米,b=2米時,S陰影=a2+3ab+b2=49+42+4=95(米2).【點評】此題考查了代數(shù)式求值,以及列代數(shù)式,列出正確的代數(shù)式是解本題的關(guān)鍵.50.(2021秋?長興縣期中)當a=6,b=﹣2時,求下列代數(shù)式的值.(1)2ab;(2)a2+2ab+b2.【分析】(1)把a與b的值代入原式計算即可求出值;(2)原式利用完全平方公式化簡,把a與b的值代入計算即可求出值.【解答】解:(1)∵a=6,b=﹣2,∴原式=2×6×(﹣2)=﹣24;(2)∵a=6,b=﹣2,∴原式=(6﹣2)2=16.【點評】此題考查了代數(shù)式求值,熟練掌握運算法則是解本題的關(guān)鍵.51.(2021秋?澠池縣期中)按照“雙減”政策,豐富課后托管服務內(nèi)容,學校準備訂購一批籃球和跳繩,經(jīng)過市場調(diào)查后發(fā)現(xiàn)籃球每個定價120元,跳繩每條定價20元.某體育用品商店提供A、B兩種優(yōu)惠方案:A方案:買一個籃球送一條跳繩;B方案:籃球和跳繩都按定價的90%付款.已知要購買籃球50個,跳繩x條(x>50).(1)若按A方案購買,一共需付款(5000+20x)元;(用含x的代數(shù)式表示),若按B方案購買,一共需付款(5400+18x)元(用含x的代數(shù)式表示).(2)當x=100時,請通過計算說明此時用哪種方案購買較為合算?(3)當x=100時,你能給出一種更為省錢的購買方案嗎?請寫出你的購買方案,并計算需付款多少元?【分析】(1)由題意按A方案購買可列式:50×120+(x﹣50)×20=5000+20x,在按B方案購買可列式:(50×120+20x)×0.9=5400+18x;(2)將x=100分別代入A方案,B方案即可以比較(3)由于A方案是買一個籃球送跳繩,B方案是籃球和跳繩都按定價的90%付款,所以可以按A方案買50個籃球,剩下的50條跳繩按B方案購買即可.【解答】解:(1)A方案購買可列式:50×120+(x﹣50)×20=(5000+20x)元;按B方案購買可列式:(50×120+20x)×0.9=(5400+18x)元;故答案為:(5000+20x),(5400+18x);(2)當x=100時,A方案購買需付款:5000+20x=5000+20×100=7000(元);按B方案購買需付款:5400+18x=5400+18×100=7200(元);∵7000<7200,∴當x=100時,應選擇A方案購買合算;(3)由(2)可知,當x=100時,A方案付款7000元,B方案付款7200元,按A方案購買50個籃球配送50個跳繩,按B方案購買50個跳繩合計需付款:120×50+20×50×90%=6900,∵6900<7000<7200,∴省錢的購買方案是:按A方案買50個籃球,剩下的50條跳繩按B方案購買,付款6900【點評】此題考查的是列代數(shù)式并求值,也可作為一元一次方程來考查,因此做

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論