2024屆江蘇省吳江青云中學數(shù)學九上期末經(jīng)典模擬試題含解析_第1頁
2024屆江蘇省吳江青云中學數(shù)學九上期末經(jīng)典模擬試題含解析_第2頁
2024屆江蘇省吳江青云中學數(shù)學九上期末經(jīng)典模擬試題含解析_第3頁
2024屆江蘇省吳江青云中學數(shù)學九上期末經(jīng)典模擬試題含解析_第4頁
2024屆江蘇省吳江青云中學數(shù)學九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省吳江青云中學數(shù)學九上期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.函數(shù)y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-22.下列四個結(jié)論,①過三點可以作一個圓;②圓內(nèi)接四邊形對角相等;③平分弦的直徑垂直于弦;④相等的圓周角所對的弧也相等;不正確的是()A.②③ B.①③④ C.①②④ D.①②③④3.若雙曲線的圖象的一支位于第三象限,則k的取值范圍是()A.k<1 B.k>1 C.0<k<1 D.k≤14.如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,OD∥BC,∠ABC=40°,則∠BCD的度數(shù)為()A.80° B.90° C.100° D.110°5.點M(2,-3)關(guān)于原點對稱的點N的坐標是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)6.如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為PQ,則△PQD的面積為()A. B. C. D.7.一元二次方程mx2+mx﹣=0有兩個相等實數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.28.下列成語所描述的事件是必然事件的是()A.水漲船高 B.水中撈月 C.一箭雙雕 D.拔苗助長9.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑,AC=2,則cosB的值是()A.B.C.D.10.如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點,與軸相交于點C,對稱軸為直線且OA=OC,則下列結(jié)論:①②③④關(guān)于的方程有一個根為其中正確的結(jié)論個數(shù)有()A.1個 B.2個 C.3個 D.4個11.如圖,中,中線AD,BE相交于點F,,交于AD于點G,下列說法①;②;③與面積相等;④與四邊形DCEF面積相等.結(jié)論正確的是()A.①③④ B.②③④ C.①②③ D.①②④12.一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.不能確定二、填空題(每題4分,共24分)13.若關(guān)于的一元二次方程的一個根是,則的值是_________.14.將正整數(shù)按照圖示方式排列,請寫出“2020”在第_____行左起第_____個數(shù).15.已知線段a=4,b=9,則a,b的比例中項線段長等于________.16.如圖,菱形的邊長為4,,E為的中點,在對角線上存在一點,使的周長最小,則的周長的最小值為__________.17.如圖,點在雙曲線上,且軸于,若的面積為,則的值為__________.18.在比例尺為1:1000000的地圖上,量得甲、乙兩地的距離是2.6cm,則甲、乙兩地的實際距離為_______千米.三、解答題(共78分)19.(8分)一元二次方程的一個根為,求的值及方程另一根.20.(8分)如圖①,在中,,,D是BC的中點.小明對圖①進行了如下探究:在線段AD上任取一點P,連接PB,將線段PB繞點P按逆時針方向旋轉(zhuǎn),點B的對應(yīng)點是點E,連接BE,得到.小明發(fā)現(xiàn),隨著點P在線段AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請你幫助小明繼續(xù)探究,并解答下列問題:(1)當點E在直線AD上時,如圖②所示.①;②連接CE,直線CE與直線AB的位置關(guān)系是.(2)請在圖③中畫出,使點E在直線AD的右側(cè),連接CE,試判斷直線CE與直線AB的位置關(guān)系,并說明理由.(3)當點P在線段AD上運動時,求AE的最小值.21.(8分)如圖,點E是弧BC的中點,點A在⊙O上,AE交BC于點D.(1)求證:;(2)連接OB,OC,若⊙O的半徑為5,BC=8,求的面積.22.(10分)如圖,AB為⊙O的直徑,點C為⊙O上一點,CH⊥AB于H,∠CAB=30°.(1)如圖1,求證:AH=3BH.(2)如圖2,點D為AB下方⊙O上一點,點E為AD上一點,若∠BOE=∠CAD,連接BD,求證:OE=BD.(3)如圖3,在(2)的條件下,連接CE,若CE⊥AD,OA=14,求BD的長.23.(10分)如圖以的一邊為直徑作⊙,⊙與邊的交點恰好為的中點,過點作⊙的切線交邊于點.(1)求證:;(2)若,求的值.24.(10分)如圖,在△ABC中,點E在邊AB上,點G是△ABC的重心,聯(lián)結(jié)AG并延長交BC于點D.(1)若,用向量、表示向量;(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的長.25.(12分)為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.分數(shù)段頻數(shù)頻率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)請在圖中補全頻數(shù)直方圖;(3)甲同學的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分數(shù)段內(nèi);(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.26.如圖,已知AD?AC=AB?AE,∠DAE=∠BAC.求證:△DAB∽△EAC.

參考答案一、選擇題(每題4分,共48分)1、D【分析】拋物線y=(x+1)2-2開口向上,有最小值,頂點坐標為(-1,-2),頂點的縱坐標-2即為函數(shù)的最小值.【詳解】解:根據(jù)二次函數(shù)的性質(zhì),當x=-1時,二次函數(shù)y=(x+1)2-2的最小值是-2.故選D.【點睛】本題考查了二次函數(shù)的最值.2、D【分析】根據(jù)確定圓的條件、圓的內(nèi)接四邊形的性質(zhì)、垂徑定理及圓心角、弧、弦的關(guān)系定理逐一判斷即可得答案.【詳解】過不在同一條直線上的三點可以作一個圓,故①錯誤,圓的內(nèi)接四邊形對角互補,故②錯誤,平分弦(非直徑)的直徑垂直于弦,并且平分弦所對的弧,故③錯誤,在同圓或等圓中,相等的圓周角所對的弧也相等,故④錯誤,綜上所述:不正確的結(jié)論有①②③④,故選:D.【點睛】本題考查確定圓的條件、圓的內(nèi)接四邊形的性質(zhì)、垂徑定理及圓心角、弧、弦的關(guān)系定理,熟練掌握相關(guān)性質(zhì)及定理是解題關(guān)鍵.3、B【分析】根據(jù)反比例函數(shù)的性質(zhì)解答即可.【詳解】∵雙曲線的圖象的一支位于第三象限,∴k﹣1>0,∴k>1.故選B.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)y(k≠0),當k>0時,圖象在第一、三象限,且在每一個象限y隨x的增大而減小;當k<0時,函數(shù)圖象在第二、四象限,且在每一個象限y隨x的增大而增大,熟練掌握反比例函數(shù)的性質(zhì)是解答本題的關(guān)鍵.4、D【分析】根據(jù)平行線的性質(zhì)求出∠AOD,根據(jù)等腰三角形的性質(zhì)求出∠OAD,根據(jù)圓內(nèi)接四邊形的性質(zhì)計算即可.【詳解】∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四邊形ABCD內(nèi)接于⊙O,∴∠BCD=180°-∠OAD=110°,故選:D.【點睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)、平行線的性質(zhì),掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.5、B【解析】試題解析:已知點M(2,-3),則點M關(guān)于原點對稱的點的坐標是(-2,3),故選B.6、D【分析】由折疊的性質(zhì)可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,即可求解.【詳解】解:過點D作DN⊥AC于N,∵點D是BC中點,∴BD=3,∵將△ABC折疊,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面積=△APQ的面積=××=,故選:D.【點睛】本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關(guān)鍵.7、C【解析】由方程有兩個相等的實數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.8、A【解析】必然事件就是一定會發(fā)生的事件,依據(jù)定義即可解決【詳解】A.水漲船高是必然事件,故正確;B.水中撈月,是不可能事件,故錯誤;C.一箭雙雕是隨機事件,故錯誤D.拔苗助長是不可能事件,故錯誤故選:A【點睛】此題考查隨機事件,難度不大9、B【解析】要求cosB,必須將∠B放在直角三角形中,由圖可知∠D=∠B,而AD是直徑,故∠ACD=90°,所以可進行等角轉(zhuǎn)換,即求cosD.在Rt△ADC中,AC=2,AD=2r=3,根據(jù)勾股定理可求得,所以.10、C【解析】由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由圖象可知當x=3時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;由OA=OC,得到方程有一個根為-c,設(shè)另一根為x,則=2,解方程可得x=4+c即可判斷④;從而可得出答案.【詳解】由圖象開口向下,可知a<0,與y軸的交點在x軸的下方,可知c<0,又對稱軸方程為x=2,所以0,所以b>0,∴abc>0,故①正確;由圖象可知當x=3時,y>0,∴9a+3b+c>0,故②錯誤;由圖象可知OA<1.∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正確;∵OA=OC,∴方程有一個根為-c,設(shè)另一根為x.∵對稱軸為直線x=2,∴=2,解得:x=4+c.故④正確;綜上可知正確的結(jié)論有三個.故選C.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.11、D【分析】為BC,AC中點,可得由于可得;可證故①正確.②由于則可證,故②正確.設(shè),可得可判斷③錯,④正確.【詳解】解:①∵為BC,AC中點,;故①正確.②,故②正確.③④設(shè),故③錯,④正確.【點睛】本題考查了平行線段成比例,解題的關(guān)鍵是掌握平行線段成比例以及面積與比值的關(guān)系.12、B【分析】根據(jù)根的判別式(),求該方程的判別式,根據(jù)結(jié)果的正負情況即可得到答案.【詳解】解:根據(jù)題意得:△=22-4×1×(-1)

=4+4

=8>0,即該方程有兩個不相等的實數(shù)根,

故選:B.【點睛】本題考查了根的判別式.一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.二、填空題(每題4分,共24分)13、1【分析】先利用一元二次方程根的定義得到a-b=﹣4,再把2019﹣a+b變形為2019﹣(a-b),然后利用整體代入的方法計算.【詳解】把代入一元二次方程,得:,即:,∴,故答案為:1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.14、611【分析】根據(jù)圖形中的數(shù)字,可以寫出前n行的數(shù)字之和,然后即可計算出2020在多少行左起第幾個數(shù)字,本題得以解決.【詳解】解:由圖可知,第一行1個數(shù),第二行2個數(shù),第三行3個數(shù),…,則第n行n個數(shù),故前n個數(shù)字的個數(shù)為:1+2+3+…+n=,∵當n=63時,前63行共有=2016個數(shù)字,2020﹣2016=1,∴2020在第61行左起第1個數(shù),故答案為:61,1.【點睛】本題考查了數(shù)字類規(guī)律探究,從已有數(shù)字確定其變化規(guī)律是解題的關(guān)鍵.15、1【分析】根據(jù)比例中項的定義,列出比例式即可求解.【詳解】解:根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積,

∴,即,解得,(不合題意,舍去)

故答案為:1.【點睛】此題考查了比例線段;理解比例中項的概念,注意線段不能是負數(shù).16、+2【分析】連接DE,因為BE的長度固定,所以要使△PBE的周長最小,只需要PB+PE的長度最小即可.【詳解】解:連結(jié)DE.∵BE的長度固定,∴要使△PBE的周長最小只需要PB+PE的長度最小即可,∵四邊形ABCD是菱形,∴AC與BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小長度為DE的長,∵菱形ABCD的邊長為4,E為BC的中點,∠DAB=60°,∴△BCD是等邊三角形,又∵菱形ABCD的邊長為4,∴BD=4,BE=2,DE=,∴△PBE的最小周長=DE+BE=,故答案為:.【點睛】本題考查了菱形的性質(zhì)、軸對稱以及最短路線問題、直角三角形斜邊上的中線性質(zhì);熟練掌握菱形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.17、【分析】設(shè)點A坐標為(x,y),由反比例函數(shù)的幾何意義得,根據(jù)的面積為,即可求出k的值.【詳解】解:設(shè)點A的坐標為:(x,y),∴,∴,∴,∵反比例函數(shù)經(jīng)過第二、四象限,則,∴故答案為:.【點睛】本題考查了反比例函數(shù)的性質(zhì),以及反比例函數(shù)的幾何意義,解題的關(guān)鍵是熟練掌握反比例函數(shù)的幾何意義進行解題.18、1【解析】根據(jù)比例尺=圖上距離:實際距離.根據(jù)比例尺關(guān)系即可直接得出實際的距離.【詳解】根據(jù)比例尺=圖上距離:實際距離,得:A,B兩地的實際距離為2.6×1000000=100000(cm)=1(千米).故答案為1.【點睛】本題考查了線段的比.能夠根據(jù)比例尺正確進行計算,注意單位的轉(zhuǎn)換.三、解答題(共78分)19、,【分析】把x=1代入已知方程,列出關(guān)于m的新方程,通過解新方程來求m的值;由根與系數(shù)的關(guān)系來求方程的另一根.【詳解】解:由題意得:,解得,當時,方程為,解得:,,∴方程的另一根.【點睛】本題考查了一元二次方程的解,根與系數(shù)的關(guān)系.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.20、(1)①50;②;(2);(3)AE的最小值.【解析】(1)①利用等腰三角形的性質(zhì)即可解決問題.②證明,,推出即可.(2)如圖③中,以P為圓心,PB為半徑作⊙P.利用圓周角定理證明即可解決問題.(3)因為點E在射線CE上運動,點P在線段AD上運動,所以當點P運動到與點A重合時,AE的值最小,此時AE的最小值.【詳解】(1)①如圖②中,∵,,∴,②結(jié)論:.理由:∵,,∴,∴,∴,∵AE垂直平分線段BC,∴,∴,∵,,∴,∴,∴.故答案為50,.(2)如圖③中,以P為圓心,PB為半徑作⊙P.∵AD垂直平分線段BC,∴,∴,∵,∴.(3)如圖④中,作于H,∵點E在射線CE上運動,點P在線段AD上運動,∴當點P運動到與點A重合時,AE的值最小,此時AE的最小值.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),平行線的判定,圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,靈活運用所學知識解決問題,學會利用輔助圓解決問題,屬于中考壓軸題.21、(1)見解析;(2)12【分析】(1)由點E是的中點根據(jù)圓周角定理可得∠BAE=∠CBE,又由∠E=∠E(公共角),即可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例,證得結(jié)論.(2)過點O作OF⊥BC于點F,根據(jù)垂徑定理得出BF=CF=4,再根據(jù)勾股定理得出OF的長,從而求出的面積【詳解】(1)證明:∵點E是弧BC的中點∴∠BAE=∠CBE=∠DBE又∵∠E=∠E∴△AEB∽△BED∴∴(2)過點O作OF⊥BC于點F,則BF=CF=4在中,∴【點睛】此題考查了圓周角定理、垂徑定理以及相似三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.22、(1)證明見解析;(2)證明見解析;(3)BD=2.【分析】(1)連接BC,根據(jù)直角三角形中,30度所對的直角邊是斜邊的一半,可得:AB=2BC,BC=2BH,可得結(jié)論;(2)由(1)得AB=2BC,AB=2OA,得OA=BC,利用ASA證明△OAE≌△BCD,可得結(jié)論;(3)過O作OM⊥AD于M,先證明∠OEA=∠BAC=30°,設(shè)OM=x,則ME=x,由△OAE≌△BCD,則∠DCE=30°,設(shè)AM=MD=y(tǒng),則AE=y(tǒng)+x,DE=y(tǒng)﹣x,根據(jù)AE=2DE列等式得:y=3x,根據(jù)勾股定理列方程可得x的值,可得:BD=2OM=2.【詳解】(1)證明:如圖1,連接BC,∵AB是⊙O的直徑,∴∠ACB=90°,∵∠CAB=30°,∴∠ABC=60°,AB=2BC,∵CH⊥AB,∴∠BCH=30°,∴BC=2BH,∴AB=4BH,∴AH=3BH,(2)證明:連接BC、DC,∵∠CAD+∠CBD=180°,∠BOE=∠CAD,∴∠BOE+∠CBD=180°,∵∠BOE+∠AOE=180°,∴∠AOE=∠CBD,∵∠OAE,∠BCD是弧BD所對的圓周角∴∠OAE=∠BCD,由(1)得AB=2BC,AB=2OA,∴OA=BC,∴△OAE≌△BCD,∴OE=BD;(3)解:過O作OM⊥AD于M,∴AM=MD,∵AO=OB,∴BD=2OM,∵∠BOE=∠CAD,∠BOE=∠BAE+∠OEA,∠CAD=∠BAE+∠BAC,∴∠OEA=∠BAC=30°,設(shè)OM=x,則ME=x,由(2)得:△OAE≌△BCD,∴AE=CD,∵∠ADC,∠ABC是弧AC所對的圓周角,∴∠ADC=∠ABC=60°,∵CE⊥AD,∴∠DCE=30°,∴CD=2DE,AE=CD,∴AE=2DE,設(shè)AM=MD=y(tǒng),則AE=y(tǒng)+x,DE=y(tǒng)﹣x,∴y+x=2(y﹣x),y=3x,在Rt△OAM中,OA=14,AM=3x,OM=x,OM2+AM2=OA2,,解得:x1=,x2=﹣(舍),∴OM=,∴BD=2OM=2.【點睛】本題主要考查圓的性質(zhì)和三角形的性質(zhì)的綜合問題,添加合適的輔助線,綜合應(yīng)用直角三角形的性質(zhì)和圓周角定理,垂徑定理和圓內(nèi)接四邊形的性質(zhì),是解題的關(guān)鍵.23、(1)詳見解析;(2)【分析】(1)直接利用三角形中位線定理結(jié)合切線的性質(zhì)得出DE⊥BC;

(2)過O點作OF⊥AB,分別用AO表示出FO,BF的長進而得出答案.【詳解】(1)連接∵為⊙的切線,∴∵為中點,為的中點∴∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論