基于快速M(fèi)IMO-OFDM無線電定義系統(tǒng)的原型設(shè)計(jì)_第1頁
基于快速M(fèi)IMO-OFDM無線電定義系統(tǒng)的原型設(shè)計(jì)_第2頁
基于快速M(fèi)IMO-OFDM無線電定義系統(tǒng)的原型設(shè)計(jì)_第3頁
基于快速M(fèi)IMO-OFDM無線電定義系統(tǒng)的原型設(shè)計(jì)_第4頁
基于快速M(fèi)IMO-OFDM無線電定義系統(tǒng)的原型設(shè)計(jì)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

沈陽航空航天大學(xué)電子信息工程學(xué)院畢業(yè)設(shè)計(jì)(外文翻譯)M.Nettles,“AJointMIMOOFDMTransceiverandMACDesignforMobileAdHocNetworking,”inProceedingsoftheInternationalWorkshoponWirelessAdHocNetworks,Oulu,Finland,May31-June32004.[21]J.W.Wallace,M.A.Jensen,A.L.Swindlehurst,andB.D.Jeffs,“ExperimentalcharacterizationoftheMIMOwirelesschannel:dataacquisitionandanalysis,”IEEETransactionsonWirelessCommunications,vol.2,pp.335–343,March2003.RapidMIMO-OFDMSoftwareDefinedRadioSystemPrototyping(Received:AmitGupta,AntonioForenza,andRobertW.HeathJr.WirelessNetworkingandCommunicationsGroupDepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin1UniversityStationC0803,Austin,TX78712-0240USAPhone:+1-512-232-2014,Fax:+1-512-471-6512{agupta,forenza,rheath}@)AbstractMultipleinput-multipleoutput(MIMO)isanattractivetechnologyforfuturewirelesssystems.MIMOcommunication,enabledbytheuseofmultipletransmitandmultiplereceiveantennas,isknownforitshighspectralefficiencyaswellasitsrobustnessagainstfadingandinterference.CombiningMIMOwithorthogonalfrequencydivisionmultiplexing(OFDM),itispossibletosignificantlyreducereceivercomplexityasOFDMgreatlysimplifiesequalizationatthereceiver.MIMO-OFDMiscurrentlybeingconsideredforanumberofdevelopingwirelessstandards;consequently,thestudyofMIMO-OFDMinrealisticenvironmentsisofgreatimportance.ThispaperdescribesanapproachforprototypingaMIMO-OFDMsystemusingaflexiblesoftwaredefinedradio(SDR)systemarchitectureinconjunctionwithcommerciallyavailablehardware.Anemphasisonsoftwarepermitsafocusonalgorithmandsystemdesignissuesratherthanimplementationandhardwareconfiguration.Thepenaltyofthisflexibility,however,isthattheeaseofusecomesattheexpenseofoverallthroughput.Toillustratethebenefitsoftheproposedarchitecture,applicationstoMIMO-OFDMsystemprototypingandpreliminaryMIMOchannelmeasurementsarepresented.Adetaileddescriptionofthehardwareisprovidedalongwithdownloadablesoftwaretoreproducethesystem.INTRODUCTIONMultiple-inputmultiple-output(MIMO)wirelesssystemsusemultipletransmitandmultiplereceiveantennastoincreasecapacityandproviderobustnesstofading[1].Toobtainthesebenefitsinbroadbandchannelswithextensivefrequencyselectivity,MIMOcommunicationlinksrequirecomplexspacetimeequalizers.ThecomplexityofMIMOsystemscanbereduced,however,throughorthogonalfrequencydivisionmultiplexing(OFDM).OFDMisanattractivedigitalmodulationtechniquethatpermitsgreatlysimplifiedequalizationatthereceiver.WithOFDM,themodulatedsignaliseffectivelytransmittedinparalleloverNorthogonalfrequencytones.ThisconvertsawidebandfrequencyselectivechannelintoNnarrowbandflatfadingchannels.CurrentlyOFDMisusedinmanywirelessdigitalcommunicationsystems,suchastheIEEE802.11a/g[2],[3]standardsforwirelesslocalareanetworks(WLANs).MIMO-OFDMtechnologyisintheprocessofbeingstandardizedbytheIEEETechnicalGroup802.11n[4]andpromisestobeastrongcandidateforfourthgeneration(4G)wirelesscommunicationsystems[5].AsthetheorybehindMIMO-OFDMcommunicationcontinuestogrow,itbecomesincreasinglyimportanttodevelopprototypeswhichcanevaluatethesetheoriesinrealworldchannelconditions.Duringthepastfewyears,anumberofMIMO-OFDMprototypeshavebeendeveloped[6]–[12].TheseimplementationsmakeuseofFPGAsorDSPs,whichrequirealargeamountoflowlevelprogrammingandafixedpointimplementation.Thisisthepreferredsolutionwhendevelopinghigh-speedimplementations;however,ithinderstheflexibilityoftheplatformasthesesystemsarenoteasilyreconfigurable.Asaresultwhenexperimentingwithmanydifferentspace-timecodingschemesorreceiverdesigns,amoreflexiblesolutionmaybepreferred.InthispaperweproposeaMIMO-OFDMsystemarchitecturebasedonthesoftwaredefinedradio(SDR)paradigm.Theadvantageofthisapproachliesinthefactthattheuserisnotrequiredtohaveindepthhardwareknowledgeandmayimplementanumberofdifferentschemesbysimplyreconfiguringthesoftware.TheplatformusesNationalInstrumentsradiofrequency(RF)hardwareinconjunctionwiththeLabVIEWgraphicalprogramminglanguage.Withthisarchitecture,itispossibletodefineandsimulateasysteminahighlevelprogramminglanguageandthenseamlesslyapplythatcodetowardsthehardwareimplementation–thisgreatlyreducesthetimeinvolvedinsystemprototyping.Comparedwith[6]–[12],ourprototypingplatformcaneasilybereduplicatedasitconsistsofcommercial-off-the-shelfhardwareandpubliclyavailablesoftware.AuserwhopurchasestheRFhardwarefromNationalInstrumentsanddownloadstheavailableMIMOsoftwaretoolkitalongwiththeprototypingcodedevelopedbytheauthors(availableat[13],[14])canrealizethesamerapidprototypingbenefitswhichwediscussinthispaper.Theflexibilityofthecurrentimplementationoftheprototypeislimitedbysomehardwareconstraints,suchasthebandwidthofthePCIbus,whichpreventsfullyreal-timetransmissionoverthewirelesslink,andsoftwareconstraintslikeourlackofcompletesynchronizationalgorithmsinthesoftware,whichcausesustouseawiredsynchronizationchannel.ThespiritofthiscontributionistosummarizeourmethodanddescribeourfirsteffortstowardsthedevelopmentofacompleteMIMO-OFDMplatformdesignedforsystemvalidationandOFDMmodulatorRec0mbineBitStreamsOFDMEqualizerOFDMdemodOFDMdomodOFDMmodulatorSpatialMultiplexingOFDMmodulatorRec0mbineBitStreamsOFDMEqualizerOFDMdemodOFDMdomodOFDMmodulatorSpatialMultiplexingFig.1.A2×2MIMO-OFDMspatialmultiplexingsystemchannelmeasurements.Moreworkneedstobeinvestigatedtoovercomethelimitationsandexpandthecapabilitiesofourinitialdesign.Thispaperisorganizedasfollows.SectionIIexploresthesignalmodelforaMIMO-OFDMsystemandourspecificMIMO-OFDMimplementation.SectionIIIdiscussesthespecificsofthehardwareandsoftwareplatform.SectionIVshowspreliminaryresultsfromoursystemimplementationaswellaschannelmeasurementsinindoorenvironments.II.MIMO-OFDMIMPLEMENTATIONInthissectionwereviewtheMIMO-OFDMsignalmodelandthendescribeourspecificMIMO-OFDMsystemimplementation.A.MIMO-OFDMSignalModelInaMIMO-OFDMsystem(see[8]andthereferencestherein)MIMOspace-timecodesarecombinedwithOFDMmodulationatthetransmitterwhilecomplicatedspace-timefrequencyprocessingisemployedatthereceiver.Forsimplicityofexplanation,weconsiderspatialmultiplexingasillustratedinFig.1thoughitwillbeapparentthatothertransmissiontechniquescanbeimplementedintheproposedarchitecture.InaMIMO-OFDMsystemwithMTtransmitantennasandMRreceiveantennas,thesampledsignalatthereceiver(aftertheFFTandremovingthecyclicprefix)ofaspatialmultiplexingMIMOsystemforOFDMsymbolperiodnandtonekcanbeexpressedbythefollowingequation(assumingperfectlinearity,timing,andsynchronization.)[1](1)TheequalizationinMIMO-OFDMsystemsmaybeenabledthroughdifferentproceduressuchaszero-forcingequalizer,minimummean-squarederrorequalizer,V-BLASTsuccessivecancellingequalizer,spheredecoder,andmaximumlikelihooddecoder(see[1]foranoverview).Inourprototypewecurrentlyimplementthezero-forcingequalizer;theflexibilityoftheproposedarchitecturethoughallowsustoprototypemoresophisticatedequalizationstrategies.B.SystemImplementationandSpecificationsThefirstimplementationfeaturesspatialmultiplexingwithtwotransmitandtworeceiveantennas,asillustratedinFig.1.OtherMIMOschemesarealreadyavailableintheLabVIEWMIMOToolkit[14],andweareplanningtousethistoimplementotherspace-frequencycodesinthefuture.ThespecificationsofthesystemarelistedinTableI.InourMIMO-OFDMimplementation,OFDMwith64tonesisemployedovera16MHzbandwidth.Thecyclicprefixis16sampleslong.ThiscorrespondstoanOFDMsymboldurationof5μs,withaguardintervalof1μsandadataportionof4μs.WetransmitourOFDMsymbolsin200msdatapackets.This200mswasdeterminedbyourhardwareasmemoryconstraintsatthereceiverpreventedlongeracquisitionperiods.Thesystemisequippedwithanadjustablecarrierfrequency.Wechosetorunoursystemat2.4GHz,whichisthecarrierfrequencyusedforWLANs[2],[3].Variousmodulationschemesarepossible(BPSK,QPSK,16-QAM,64-QAM)alongwithoptionalconvolutionalcoding.ChannelestimationiscarriedoutbyperiodicallytransmittinganOFDMtrainingsymbol.Thefrequencyatwhichtrainingsymbolsaresentcanbeprogrammaticallychangedinthesoftwareanddependsontheexpectedvariationofthechannel.Theestimationatthereceiverisenabledbythepilotsymbols,sentoutoverorthogonaltonesacrossthetransmitantennas.Wethenusealinearinterpolationacrossthetonestoestimatethechannel’sfullfrequencyresponse.Oncewehaveachannelestimate,thedataisdemodulatedbyaMIMOzero-forcinglinearreceiver.Duetospacelimitations,inthiscontributionwedonotprovideanalyticaldetailsofthechannelestimationalgorithmemployedintheprototype.TABLEISPECIFICATIONSOFOURMIMO-OFDMIMPLEMENTATIONNo.ofTransmitAntennas2No.ofReceiveAntennas2CarrierFreq.2.4GHzBandwidth16MHzNo.ofTones64SubcarrierSpacing25kHzOFDMSymbolDuration5usGuardIntervalDuration1usOFDMdataduration4usLengthofCyclicPrefix16samplesMIMOSchemespatialmultiplexingPacketDuration200msFig.2.PictureoftheNationalInstrumentsRFhardwareWearecurrentlyavoidingcarriersynchronizationissuesbydirectlywiringtheclocksofthetransmitterandreceivertogether.Additionally,inordertoavoidtimingissueswearesendingatriggerfromthetransmittertothereceiverwhendatatransmissionbegins.Softwaresynchronizationisunderdevelopmentandwillbeincludedinfuturework.AswearefollowingaSDRapproachtoprototyping,therearemanyparametersofthesystemwhichcanbeadjustedprogrammatically.TheflexibilityenabledbyaSDRMIMOOFDMprototypebecomesclearinthefollowingsectionwherewepresentadetaileddescriptionoftheprototypingplatform.III.PROTOTYPINGPLATFORMHardwareDescriptionNationalInstruments’RFhardwareisthefoundationofourprototype,asillustratedinFigure2.ThehardwarecomesinthePCIextensionsforinstrumentation(PXI)formfactor(whichissimilartoPCIexceptdesignedforindustrialapplications).EachpairoftransmittersandreceiversishousedinseparatePXIchassis.EachPXIchassisisconnectedtoaPCthroughaPCIbridgewhichconnectsthePXIhardwaretothePCIbus.EachPCisequippedwithdual2.8GHzprocessorsand2Gbofmemory.ThespecificationsofthehardwareislistedinTableIIandthecorrespondingblockdiagramisdepictedinFigure3.TABLEIIHARDWARESPECIFICATIONSTransmitterArbitraryWaveformGeneratorPXI-5421100millionsamplespersec.16bitresolution43MHzbandwidthUpconverterPXI-5610250KHz-2.7GHzCarrier+13dBrangeDigitizerPXI-5620Receiver64millionsamplespersec.14bitresolution30MHzbandwidthDownconverterPXI-56009kHz-2.7GHzCarrier20MHzreal-timebandwidthEachtransmitunitiscalledaRFsignalgeneratoranditconsistsoftwoparts.Thefirstisthearbitrarywaveformgenerator(ARB).TheARBactsasthedigitaltoanalogconverter(DAC)anditoperatesatamaximumof100Msamples/secwitha16-bitresolution.TheARBhasa256MBbuffer,althoughthehardwareisenabledtocyclethroughthebuffertoprovideforcontinuoustransmission.Whentransmittingcomplexdata,theARBitselfupconvertsthesignaltoanintermediatefrequency(IF)of25MHz(thisIFcanbeprogrammaticallychanged)beforethesignalissenttotheRFupconverter.Theupconvertercanmodulateasignaluptoacarrierfrequencyof2.7GHzwithbandwidthsupto20MHzandiscapableofamaximumof13dBmofpower.TheARBhasatriggerlineavailablefortimingsynchronization,whiletheupconverterhasaninputavailableforclocksynchronization.ToextendtheusablerangeoftheprototypeweusedaMinicircuitsZQL-2700MLNWLNA(lownoiseamplifier)atthereceiver.WederivedthegainoftheLNAfromthelink-budgetequation[15]Additionally,fortimingandclocksynchronization,wefoundthatweneededa3waypowersplittertosendeachsignalouttoeachofthetransmitandreceivecomponents.Thissplitterwillbereplacedoncefullopenloopsynchronizationisimplemented.SoftwareDescriptionTheRFHardwareisdesignedtobeeasilyconfiguredandprogrammedthroughNationalInstruments’LabVIEWprogrammingenvironment.LabVIEWisadataflowbasedgraphicalprogramminglanguage.Thehardwarecanbeprogrammedinotherlanguages,however,LabVIEWprovidestheuserwithsimpleprogrammingandrapidprototypingcapabilities.WebegantheprototypingprocessbycreatingasimulationoftheMIMO-OFDMsysteminLabVIEW.ForthispurposeourresearchgrouphascreatedapubliclyavailableMIMOtoolkitforLabVIEWwhichcanbedownloadedat[14].ThistoolkitincludesthebuildingblockstosimulatevariousMIMOschemesaswellasthefunctionswhicharenecessarytosimulatethesystemcompletelyfrombasebanduptothemodulationanddecoders.TheMIMOschemesthatarecurrentlyincludedinthetoolkitarespatialmultiplexing,Alamoutiencoding,lineardispersionencoding,trelliscoding,alongwithothercommonMIMOschemesandfunctionstosupportsimulation.Aftercompletingsimulations,thenextstageinourprototypingprocesswastoactuallyprogramthehardware.WiththeLabVIEWsimulationsalreadycompleted,thetransitiontohardwareprogrammingwasverysimpleasthecodewrittenforthesystemsimulationcouldthenbeappliedwiththehardware.ManyofthelowlevelhardwareissueswereavoidedbyusingtheLabVIEWhardwaredevicedrivers.IV.RESULTSInthissectionwedescribeasimplesystemimplementationaswellasabasicchannelmeasurementsetup.Bothimple-mentationsareavailablefordownloadat[13]alongFig.4.TheLabVIEWtransmittersoftwareinterfacewithvariousprogramablesystemparametersMIMO-OFDMSystemImplementationOneoftheobjectivesofhardwareimplementationwastotestvariouscandidatecodingandreceiverstrategiesfortheMIMO-OFDMphysicallayerunderconsiderationintheIEEE802.11nstandard,whichiscurrentlyunderdevelopment.ThesystemfollowedthespecificationsoutlinedinSectionIIIwitha2×2spatialmultiplexingMIMOsystemcombinedwith64OFDMtones.QPSKmodulationwascombinedwithachannelestimationschemethatsendsatrainingsymboleveryfifthOFDMsymbol.Aspreviouslydiscussed,duetomemoryconstraints,only200msworthofpacketsofdataaretransmittedinagiventimeinterval.Inthisperiodweareconsistentlyabletoachieveadatarateof40.96Mbits/s(8.192Mbitsaretransmittedinthis200mstimeframe)withourgivenhardware.Duetoourcurrenthardwarelimitations,eachacquisitionrequiresapproximately4secondsofprocessingbeforeanewacquisitioncanoccur.Thustheoverallthroughputweachieveisabout2Mbitswhenoperatedusingthisdutycycle.Futurehardwareupgradeswillallowrealtimesystemimplementations.Fordemonstrationpurposeswetransmittedanimageasdisplayedinthegraphicaluserinterface(GUI)depictedinFigure4.ThedecodedimageisreportedinFigure5alongwiththeGUIatthereceiverside.Thedifferenceindownloadspeedoftheimageinnon-MIMOandMIMOconfigurationsprovidesanintuitivemotivationforMIMO,e.g.theimagetransferstwiceasfastwithMIMOinourconfiguration.WewillcontinuetobuildonourcurrentsystemimplementationasweimplementanumberofotheravailableMIMOschemeswhichareavailablethroughourMIMOtoolkit[14].Wearealsoinvestigatingaddingamediumaccesscontrol(MAC)protocolaswellasafeedbackchannel.B.ChannelMeasurementsAlongwiththesystemimplementation,weareusingtheprototypetoconductchannelmeasurements.Weonlyhavepreliminaryresultsfromthehardware,buttheyrevealthepotentialofthisapproachforconductingmeaningfulchannelmeasurements.Weperformedthechannelmeasurementsinthewirelessnetworkingandcommunicationsgroup’s(WNCG)workspaceintheEngineeringSciencebuildingatTheUniversityofTexasatAustin.Theenvironmentisatypicalcubicleofficeenvironment.Wecollecteddataatacarrierfrequencyof2.4GHzovera16MHzbandwidthwith64tones.Weemployedhalf-wavelengthomnidirectionaldipoleantennasforourchannelmeasurementstoradiateisotropicallyalongmultiplepropagationpaths,distributedaroundtransmitterandreceiveraccordingtothemodelin[16].Thetransmitandreceiveantennaswereplacedapproximately8metersapartinbetweencubiclessothattherewasnolineofsightpropagationpaths,withtwowallsbetweenthetransmitterandreceiver.Thetwotransmitantennaswerespacedfivewavelengthsapartfromeachother(approximately60centimeters)toreducethespatialcorrelationacrossdifferentMIMOchannels[17]andtheeffectofmutualcoupling[18].Thetworeceiveantennaswereseparatedbythesamedistance.Fig.5.TheLabVIEWreceiversoftwareinterfacewithvariousprogramablesystemparameters.preliminaryresultsfromthehardware,buttheyrevealthepotentialofthisapproachforconductingmeaningfulchannelmeasurements.Weperformedthechannelmeasurementsinthewirelessnetworkingandcommunicationsgroup’s(WNCG)workspaceintheEngineeringSciencebuildingatTheUniversityofTexasatAustin.Theenvironmentisatypicalcubicleofficeenvironment.Wecollecteddataatacarrierfrequencyof2.4GHzovera16MHzbandwidthwith64tones.Weemployedhalf-wavelengthomnidirectionaldipoleantennasforourchannelmeasurementstoradiateisotropicallyalongmultiplepropagationpaths,distributedaroundtransmitterandreceiveraccordingtothemodelin[16].Thetransmitandreceiveantennaswereplacedapproximately8metersapartinbetweencubiclessothattherewasnolineofsightpropagationpaths,withtwowallsbetweenthetransmitterandreceiver.Thetwotransmitantennaswerespacedfivewavelengthsapartfromeachother(approximately60centimeters)toreducethespatialcorrelationacrossdifferentMIMOchannels[17]andtheeffectofmutualcoupling[18].Thetworeceiveantennaswereseparatedbythesamedistance.WemeasuredtheMIMOchannelsoverthetimeandfrequencydomainsandtheresultsareshowninFigure6.ThetemporalevolutionofthechannelisflatduetothelowDopplereffectinfixedwirelessscenarios,whereasthefluctuationsinthefrequencydomainareduetothemultiplepropagationpaths.InFigure7wedisplaytheaveragepowerdelayprofile(PDP)ofchannelH22.WefoundagoodfitofthisPDPwithwellknownmodelsandmeasurementsresultsforindoorpropagationenvironments[12],[16],[19].NotethatthemodestselectivityofthechannelH22isduetothesmallspreadinthedelayprofile.V.CONCLUSIONSANDFUTUREWORKInthispaper,wepresentedaMIMO-OFDMprototypingarchitecturewhichemphasizesaSDRparadigm.Theplatformfreestheuserfromlow-levelhardwareimplementationissuesandallowsmoreintensivestudyofalgorithmandsystemdesignissues.Weillustratedapplicationsofthisapproachtosystemimplementationandchannelmeasurements.InfutureworkweplantoapplythistostudyMACprotocoldesignsforMIMO-OFDMadhocnetworks[22]aswellastomorecomprehensivelyanalyzeMIMOchannelsasin[21].ACKNOWLEDGEMENTSTheauthorswouldliketothankNationalInstrumentsfortheirhardwaredonationaswellasAndyHindeatNationalInstrumentsforhisassistancewiththehardwareandUTAustinstudentsBrettWesterveltandVeynuNarasimanfortheircontributionstothesystemprototype.REFERENCES[1]A.Paulraj,R.Nabar,andD.Gore,IntroductiontoSpace-TimeWirelessCommunications,CambridgeUniversityPress,2003.[2]“Part11:WirelessLANMediumAccessControl(MAC)andPhysicalLayer(PHY)Specifications:High-SpeedPhysicalLayerinthe5GHzBand,”IEEEStandard802.11a1999.[3]“Part11:WirelessLANMediumAccessControl(MAC)andPhysicalLayer(PHY)specificationsAmendment4:FurtherHigher-SpeedPhysicalLayerExtensioninthe2.4GHzBand,”IEEEStandard802.11g2003.[4]“IEEE802.11nTaskGroup,”/groups/802/11/Reports/tgnupdate.htm.[5]H.Sampath,S.Talwar,J.Tellado,V.Erceg,andA.Paulraj,“AFourth-GenerationMIMO-OFDMBroadbandWirelessSystem:Design,Performance,andFieldTrialResults,”IEEECommunicationsMagazine,vol.40,no.9,pp.143–149,September2002.[6]A.Adjoudaniet.al.,“PrototypeExperienceforMIMOBLASToverThird-GenerationWirelessSystem,”IEEEJournalonSelectedAreasinComm.,vol.21,no.3,pp.440–451,April2003.[7]P.Murphy,F.Lou,andP.Frantz,“AHardwareTestbedfortheImplementationandEvaluationofMIMOAlgorithms,”inIEEEInternationalConferenceonMobileandWirelessCommunicationsNetworks,October2003.[8]G.L.Stuber,J.R.Barry,S.W.Mclaughlin,Y.Li,M.A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論