2023-2024學(xué)年安徽省泗縣樊集中學(xué)高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
2023-2024學(xué)年安徽省泗縣樊集中學(xué)高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
2023-2024學(xué)年安徽省泗縣樊集中學(xué)高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
2023-2024學(xué)年安徽省泗縣樊集中學(xué)高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
2023-2024學(xué)年安徽省泗縣樊集中學(xué)高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年安徽省泗縣樊集中學(xué)高三第二次診斷性檢測(cè)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知甲盒子中有個(gè)紅球,個(gè)藍(lán)球,乙盒子中有個(gè)紅球,個(gè)藍(lán)球,同時(shí)從甲乙兩個(gè)盒子中取出個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為.則()A. B.C. D.2.某個(gè)小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過(guò)15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1403.已知四棱錐,底面ABCD是邊長(zhǎng)為1的正方形,,平面平面ABCD,當(dāng)點(diǎn)C到平面ABE的距離最大時(shí),該四棱錐的體積為()A. B. C. D.14.已知是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.5.已知集合,集合,則()A. B. C. D.6.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),,則使得成立的的取值范圍是()A. B.C. D.7.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.18.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.9.已知拋物線:的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),其中點(diǎn)在第一象限,若弦的長(zhǎng)為,則()A.2或 B.3或 C.4或 D.5或10.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間11.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.如圖,在△ABC中,AB=4,D是AB的中點(diǎn),E在邊AC上,AE=2EC,CD與BE交于點(diǎn)O,若OB=OC,則△ABC面積的最大值為_(kāi)______.15.在的二項(xiàng)展開(kāi)式中,所有項(xiàng)的系數(shù)之和為1024,則展開(kāi)式常數(shù)項(xiàng)的值等于_______.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓()經(jīng)過(guò)點(diǎn),離心率為,、、為橢圓上不同的三點(diǎn),且滿足,為坐標(biāo)原點(diǎn).(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.18.(12分)已知非零實(shí)數(shù)滿足.(1)求證:;(2)是否存在實(shí)數(shù),使得恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由19.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程是(為參數(shù),常數(shù)),曲線的極坐標(biāo)方程是.(1)寫(xiě)出的普通方程及的直角坐標(biāo)方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點(diǎn),求直線的極坐標(biāo)方程.20.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求的值;(2)若,求的面積.21.(12分)已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)在上存在零點(diǎn).求實(shí)數(shù)的取值范圍;若存在實(shí)數(shù),當(dāng)時(shí),函數(shù)在時(shí)取得最大值,求正實(shí)數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實(shí)數(shù)的值.22.(10分)已知a>0,證明:1.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個(gè)數(shù),對(duì)應(yīng)的事件有哪些結(jié)果,從而得到對(duì)應(yīng)的概率的大小,再者就是對(duì)隨機(jī)變量的值要分清,對(duì)應(yīng)的概率要算對(duì),利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個(gè)球,有交換的都是紅球、交換的都是藍(lán)球、甲盒的紅球換的乙盒的藍(lán)球、甲盒的藍(lán)球交換的乙盒的紅球,紅球的個(gè)數(shù)就會(huì)出現(xiàn)三種情況;如果交換的是兩個(gè)球,有紅球換紅球、藍(lán)球換藍(lán)球、一藍(lán)一紅換一藍(lán)一紅、紅換藍(lán)、藍(lán)換紅、一藍(lán)一紅換兩紅、一藍(lán)一紅換亮藍(lán),對(duì)應(yīng)的紅球的個(gè)數(shù)就是五種情況,所以分析可以求得,故選A.點(diǎn)睛:該題考查的是有關(guān)隨機(jī)事件的概率以及對(duì)應(yīng)的期望的問(wèn)題,在解題的過(guò)程中,需要對(duì)其對(duì)應(yīng)的事件弄明白,對(duì)應(yīng)的概率會(huì)算,以及變量的可取值會(huì)分析是多少,利用期望公式求得結(jié)果.2、C【解析】從頻率分布直方圖可知,用水量超過(guò)15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過(guò)15立方米所以小區(qū)內(nèi)用水量超過(guò)15立方米的住戶戶數(shù)為,故選C3、B【解析】

過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過(guò)點(diǎn)E作,垂足為H,過(guò)H作,垂足為F,連接EF.因?yàn)槠矫嫫矫鍭BCD,所以平面ABCD,所以.因?yàn)榈酌鍭BCD是邊長(zhǎng)為1的正方形,,所以.因?yàn)槠矫鍭BE,所以點(diǎn)C到平面ABE的距離等于點(diǎn)H到平面ABE的距離.易證平面平面ABE,所以點(diǎn)H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因?yàn)?,所以,所以,?dāng)時(shí),等號(hào)成立.此時(shí)EH與ED重合,所以,.故選:B.【點(diǎn)睛】本題考查空間中點(diǎn)到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意輔助線及面面垂直的應(yīng)用.4、D【解析】

根據(jù)雙曲線的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.5、C【解析】

求出集合的等價(jià)條件,利用交集的定義進(jìn)行求解即可.【詳解】解:∵,,∴,故選:C.【點(diǎn)睛】本題主要考查了對(duì)數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運(yùn)算,屬于基礎(chǔ)題.6、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時(shí),g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時(shí),g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時(shí),f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時(shí),f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問(wèn)題從表面上看似乎與函數(shù)的單調(diào)性無(wú)關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡(jiǎn)的作用.因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問(wèn)題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效.7、A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.8、D【解析】

利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、C【解析】

先根據(jù)弦長(zhǎng)求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點(diǎn)睛】本題主要考查直線和拋物線的位置關(guān)系,弦長(zhǎng)問(wèn)題一般是利用弦長(zhǎng)公式來(lái)處理.出現(xiàn)了到焦點(diǎn)的距離時(shí),一般考慮拋物線的定義.10、D【解析】

可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫(huà)出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題11、B【解析】

由,可得,解出即可判斷出結(jié)論.【詳解】解:因?yàn)?,且.,解得.是的必要不充分條件.故選:.【點(diǎn)睛】本題考查了向量數(shù)量積運(yùn)算性質(zhì)、三角函數(shù)求值、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.12、B【解析】

根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域?yàn)?,所以不合題意;選項(xiàng),計(jì)算,不符合函數(shù)圖象;對(duì)于選項(xiàng),與函數(shù)圖象不一致;選項(xiàng)符合函數(shù)圖象特征.故選:B【點(diǎn)睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見(jiàn)方法為排除法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對(duì)原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對(duì)等式兩邊求導(dǎo),得,令,則.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開(kāi)式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14、【解析】

先根據(jù)點(diǎn)共線得到,從而得到O的軌跡為阿氏圓,結(jié)合三角形和三角形的面積關(guān)系可求.【詳解】設(shè)B,O,E共線,則,解得,從而O為CD中點(diǎn),故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點(diǎn)睛】本題主要考查三角形的面積問(wèn)題,把所求面積進(jìn)行轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】

利用展開(kāi)式所有項(xiàng)系數(shù)的和得n=5,再利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求得展開(kāi)式中的常數(shù)項(xiàng).【詳解】因?yàn)榈亩?xiàng)展開(kāi)式中,所有項(xiàng)的系數(shù)之和為4n=1024,n=5,故的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=C·35-r,令,解得r=4,可得常數(shù)項(xiàng)為T(mén)5=C·3=15,故填15.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用、二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于中檔題.16、【解析】

由,求出長(zhǎng)度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點(diǎn)睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計(jì)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】

(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、、點(diǎn)坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線方程,再與橢圓方程聯(lián)立利用韋達(dá)定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設(shè),,,由為的重心,;又因?yàn)?,,,,?)當(dāng)?shù)男甭什淮嬖跁r(shí):,,,代入橢圓得,,,當(dāng)?shù)男甭蚀嬖跁r(shí):設(shè)直線為,這里,由,,根據(jù)韋達(dá)定理有,,,故,代入橢圓方程有,又因?yàn)?,綜上,的范圍是.【點(diǎn)睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線與橢圓所交弦長(zhǎng),屬于一般題.18、(1)見(jiàn)解析(2)存在,【解析】

(1)利用作差法即可證出.(2)將不等式通分化簡(jiǎn)可得,討論或,分離參數(shù),利用基本不等式即可求解.【詳解】又即即①當(dāng)時(shí),即恒成立(當(dāng)且僅當(dāng)時(shí)取等號(hào)),故②當(dāng)時(shí)恒成立(當(dāng)且僅當(dāng)時(shí)取等號(hào)),故綜上,【點(diǎn)睛】本題考查了作差法證明不等式、基本不等式求最值、考查了分類討論的思想,屬于基礎(chǔ)題.19、(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】

(1)消去參數(shù)的直角坐標(biāo)方程,利用,即得的直角坐標(biāo)方程;(2)由直線與拋物線相切,求導(dǎo)可得切線斜率,再由直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,可求解得到切點(diǎn)坐標(biāo),即得解.【詳解】(1)消去參數(shù)的直角坐標(biāo)方程為:.的極坐標(biāo)方程.∵,.當(dāng)時(shí)表示以為圓心為半徑的圓;為拋物線.(2)設(shè)切點(diǎn)為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,故有,直線的直角坐標(biāo)方程為,所以的極坐標(biāo)方程為.【點(diǎn)睛】本題考查了極坐標(biāo),參數(shù)方程綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20、(1);(2).【解析】

(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點(diǎn)睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問(wèn)題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.21、;4;12.【解析】

由題意可知,,求導(dǎo)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論