寧夏銀川市西夏區(qū)育才中學(xué)2023-2024學(xué)年高三第三次測評數(shù)學(xué)試卷含解析_第1頁
寧夏銀川市西夏區(qū)育才中學(xué)2023-2024學(xué)年高三第三次測評數(shù)學(xué)試卷含解析_第2頁
寧夏銀川市西夏區(qū)育才中學(xué)2023-2024學(xué)年高三第三次測評數(shù)學(xué)試卷含解析_第3頁
寧夏銀川市西夏區(qū)育才中學(xué)2023-2024學(xué)年高三第三次測評數(shù)學(xué)試卷含解析_第4頁
寧夏銀川市西夏區(qū)育才中學(xué)2023-2024學(xué)年高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

寧夏銀川市西夏區(qū)育才中學(xué)2023-2024學(xué)年高三第三次測評數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖像大致為().A. B.C. D.2.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.3.對于函數(shù),定義滿足的實(shí)數(shù)為的不動點(diǎn),設(shè),其中且,若有且僅有一個不動點(diǎn),則的取值范圍是()A.或 B.C.或 D.4.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或5.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關(guān)于點(diǎn)對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對稱C.圖象關(guān)于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根7.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.8.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.9.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.10.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.11.已知定義在上的函數(shù)滿足,且當(dāng)時,.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.復(fù)數(shù)為虛數(shù)單位)的虛部為__________.14.已知,記,則的展開式中各項(xiàng)系數(shù)和為__________.15.在的展開式中,的系數(shù)為________.16.已知函數(shù),若,則的取值范圍是__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,側(cè)面是菱形,其對角線的交點(diǎn)為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.18.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒有零點(diǎn);(2)在上恒成立,求的取值范圍.19.(12分)如圖,在四棱錐中,底面,,,,為的中點(diǎn),是上的點(diǎn).(1)若平面,證明:平面.(2)求二面角的余弦值.20.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.21.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.22.(10分)在邊長為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無限接近于0時,排除選項(xiàng)B;【詳解】對于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對于選項(xiàng)B:當(dāng),且無限接近于0時,接近于,,此時.故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.2、A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項(xiàng)

故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.3、C【解析】

根據(jù)不動點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時,,則在內(nèi)單調(diào)遞增;當(dāng)時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.4、D【解析】

根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.5、B【解析】

求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點(diǎn).由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點(diǎn),令,則,令,則問題即在上有零點(diǎn),由于在上遞增,所以的取值范圍是.故選:B【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點(diǎn)問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6、C【解析】

由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項(xiàng).【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項(xiàng)中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當(dāng)時,,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.7、D【解析】

做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點(diǎn),而函數(shù)在上有3個交點(diǎn),則在上有4個不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實(shí)數(shù)根,則在上有4個不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過時,;當(dāng)直線經(jīng)過時,,可知當(dāng)時,直線與的圖象在上有4個交點(diǎn),即方程,在上有4個不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問題的基本思想,屬于中檔題.8、D【解析】

設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時,;當(dāng)時,故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來求解最值.9、A【解析】

根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點(diǎn)睛】本題考查了常見幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.10、C【解析】

根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】

由已知先求出,即,進(jìn)一步可得,再將所求問題轉(zhuǎn)化為對于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時,則,,所以,,顯然當(dāng)時,,故,,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時,單調(diào)遞增,當(dāng)時,有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識,是一道較為綜合的數(shù)列題.12、C【解析】

設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:,即虛部為1,故填:1.考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算14、【解析】

根據(jù)定積分的計(jì)算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計(jì)算,可得,令,則,即的展開式中各項(xiàng)系數(shù)和為.【點(diǎn)睛】本題主要考查了定積分的應(yīng)用,以及二項(xiàng)式定理的應(yīng)用,其中解答中根據(jù)定積分的計(jì)算和二項(xiàng)式定理求得的表示是解答本題的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)二項(xiàng)展開式定理,求出含的系數(shù)和含的系數(shù),相乘即可.【詳解】的展開式中,所求項(xiàng)為:,的系數(shù)為.

故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式定理的應(yīng)用,屬于基礎(chǔ)題.16、【解析】

根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當(dāng)時,,,當(dāng)時,,所以,故的取值范圍是.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對數(shù)和指數(shù)的運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線面垂直的定義和判定定理即可證明;

2建立空間直角坐標(biāo)系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點(diǎn),,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因?yàn)椋瑒t在等腰直角三角形中,所以.在中,由得,以為原點(diǎn),分別以為軸建立空間直角坐標(biāo)系.則所以設(shè)平面的一個法向量為,則,可得,取平面的一個法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉(zhuǎn)化為求二面角的正弦值,求出后,在中,過點(diǎn)作的垂線,垂足為,連接,則就是所求二面角平面角的補(bǔ)角,先求出,再求出,最后在中求出.)【點(diǎn)睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)先利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點(diǎn);(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當(dāng)時,,,這時,又函數(shù)是奇函數(shù),所以當(dāng)時,.綜上,當(dāng)時,函數(shù)單調(diào)遞增;當(dāng)時,函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點(diǎn).(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時,,又,所以當(dāng)時,,滿足題意;當(dāng)時,有,與條件矛盾,舍去;當(dāng)時,令,則,又,故在區(qū)間上有無窮多個零點(diǎn),設(shè)最小的零點(diǎn)為,則當(dāng)時,,因此在上單調(diào)遞增.,所以.于是,當(dāng)時,,得,與條件矛盾.故的取值范圍是.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式的應(yīng)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想和放縮法的應(yīng)用,難度較大,意在考查學(xué)生的數(shù)學(xué)建模能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.19、(1)證明見解析(2)【解析】

(1)因?yàn)?,利用線面平行的判定定理可證出平面,利用點(diǎn)線面的位置關(guān)系,得出和,由于底面,利用線面垂直的性質(zhì),得出,且,最后結(jié)合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標(biāo)系,標(biāo)出點(diǎn)坐標(biāo),運(yùn)用空間向量坐標(biāo)運(yùn)算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因?yàn)?,平面,平面,所以平面,因?yàn)槠矫妫矫?,所以可設(shè)平面平面,又因?yàn)槠矫?,所?因?yàn)槠矫妫矫?,所以,從而?因?yàn)榈酌?,所?因?yàn)?,所?因?yàn)?,所以平?綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點(diǎn),,,所在直線分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.因?yàn)椋裕瑒t,,,,所以,,,.設(shè)是平面的法向量,由取取,得.設(shè)是平面的法向量,由得取,得,所以,即的余弦值為.【點(diǎn)睛】本題考查線面垂直的判定和空間二面角的計(jì)算,還運(yùn)用線面平行的性質(zhì)、線面垂直的判定定理、點(diǎn)線面的位置關(guān)系、空間向量的坐標(biāo)運(yùn)算等,同時考查學(xué)生的空間想象能力和邏輯推理能力.20、(1),.(2)見解析【解析】

(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時等號成立.故,即.【點(diǎn)睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.21、(1)(2)【解析】

(1)根據(jù)正弦定理到,得到答案.(2)計(jì)算,再利用余弦定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論