版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶城廂中學高二數(shù)學理期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.甲,乙兩人從同一起點出發(fā)按同一方向行走,已知甲,乙行走的速度與行走的時間關(guān)系分別為,(如右上圖);當甲,乙行走的速度相同(不為零)時刻:A.甲乙兩人再次相遇
B.甲乙兩人加速度相同
C.乙在甲的前方
D.甲在乙的前方
參考答案:D略2.參考答案:C略3.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若A=60°,c=6,a=6,則此三角形有()A.兩解 B.一解 C.無解 D.無窮多解參考答案:B【考點】正弦定理.【分析】由三角形的知識可判三角形為正三角形,可得一解.【解答】解:由等邊對等角可得C=A=60°,由三角形的內(nèi)角和可得B=60°,∴此三角形為正三角形,唯一解.故選:B.【點評】本題考查三角形解的個數(shù)的判斷,涉及等邊對等角和三角形的內(nèi)角和,屬基礎(chǔ)題.4.(15分)已知等差數(shù)列{an}滿足
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列的前n項和.參考答案:5.已知A,B,C三點不共線,點O為平面ABC外的一點,則下列條件中,能得到P∈平面ABC的是()A. B.C. D.參考答案:B【考點】共線向量與共面向量.【分析】根據(jù)題意,由空間向量基本定理可得:P∈平面ABC的充要條件是存在實數(shù)α、β、γ,使得=α+β+γ成立,且α+β+γ=1,實數(shù)α、β、γ有且僅有1組;據(jù)此依次分析選項,驗證α+β+γ=1是否成立,即可得答案.【解答】解:根據(jù)題意,A,B,C三點不共線,點O為平面ABC外的一點,若P∈平面ABC,則存在實數(shù)α、β、γ,使得=α+β+γ成立,且α+β+γ=1,實數(shù)α、β、γ有且僅有1組;據(jù)此分析選項:對于A:中,+(﹣)+=0≠1,不滿足題意;對于B:中,++(﹣1)≠1,滿足題意;對于C:=++中,1+1+1=3≠1,不滿足題意;對于D:=﹣﹣中,1+(﹣1)+(﹣1)=﹣1≠1,不滿足題意;故選:B.【點評】本題考查空間向量的共線與共面的判斷,關(guān)鍵是掌握空間向量共面的判斷方法.6.若橢圓上的一點到橢圓一個焦點的距離為,則到另一焦點距離為(
)A.
B.
C.
D.參考答案:B7.已知正數(shù)a,b滿足4a+b=3,則e?e的最小值為()A.3 B.e3 C.4 D.e4參考答案:B【考點】基本不等式.【分析】利用基本不等式的性質(zhì)、指數(shù)函數(shù)的運算性質(zhì)即可得出.【解答】解:∵正數(shù)a,b滿足4a+b=3,∴==≥==3.當且僅當b=2a=1時取等號.則e?e=≥e3.故選:B.8.點(-1,2)關(guān)于直線y=x-1的對稱點的坐標是(
)A.(3,2)
B.(-3,-2)
C.(-3,2)
D.(3,-2)參考答案:D略9.直線與雙曲線的左支、右支分別交于A、B兩點,O為坐標原點,且△AOB為等腰直角三角形,則該雙曲線的離心率為()A. B. C. D.參考答案:B【分析】由等腰直角三角形的性質(zhì),求得A點坐標,代入雙曲線方程,求得和的關(guān)系,由離心率公式即可求得雙曲線的離心率.【詳解】由題意可知:直線與y軸交于C點,△AOB為等腰直角三角形,則∠BAO=∠ABO=45°,則AC=2b,△AOB為等腰直角三角形,A(-2b,2b),將A代入雙曲線,可得,雙曲線的離心率,故選:B.【點睛】本題考查雙曲線的簡單的幾何性質(zhì),考查雙曲線的離心率公式,考查計算能力,屬于基礎(chǔ)題.10.定義一種運算,令(為常數(shù)),且,則使函數(shù)的最大值為的的集合是
(
)A.
B.
C.
D.
參考答案:C略二、填空題:本大題共7小題,每小題4分,共28分11.曲線y=x3-2x2-4x+2在點(1,-3)處的切線方程是
。參考答案:略12.已知圓錐的側(cè)面展開圖是一個半徑為2的半圓,則這個圓錐的高是.參考答案:
【考點】旋轉(zhuǎn)體(圓柱、圓錐、圓臺).【分析】由圓錐的側(cè)面展開圖是一個半徑為2的半圓知,圓錐的軸截面為邊長為2的正三角形.【解答】解:∵圓錐的側(cè)面展開圖是一個半徑為2的半圓,∴圓錐的軸截面為邊長為2的正三角形,則圓錐的高h=2×sin60°=.【點評】考查了學生的空間想象力.13.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表廣告費用(萬元)4235銷售額(萬元)49263954
根據(jù)上表可得回歸方程中的為9.4,則
.參考答案:9.114.求由拋物線與直線所圍成的平面圖形的面積.參考答案:解一:,得,,解二:
略15.已知A為函數(shù)圖像上一點,在A處的切線平行于直線,則A點坐標為
▲
.參考答案:略16.已知雙曲線的兩條漸近線與拋物線的準線分別交于兩點,為坐標原點,若雙曲線的離心率為2,的面積為,則
參考答案:p=217.盒子里裝有大小質(zhì)量完全相同且分別標有數(shù)字1、2、3、4的四個小球,從盒子里隨機摸出兩個小球,那么事件“摸出的小球上標有的數(shù)字之和為5”的概率是.參考答案:【考點】列舉法計算基本事件數(shù)及事件發(fā)生的概率.【分析】從盒子里隨機摸出兩個小球,共有6種結(jié)果,“摸出的小球上標有的數(shù)字之和為5”的有(1,4),(2,3)共2種,根據(jù)古典概型概率公式得到結(jié)果.【解答】解:從盒子里隨機摸出兩個小球,共有6種結(jié)果,列舉如下:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4);“摸出的小球上標有的數(shù)字之和為5”的有(1,4),(2,3)共2種,故“摸出的小球上標有的數(shù)字之和為5”的概率P==,故答案為:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.某工地決定建造一批房型為長方體、房高為2.5米的簡易房,房的前后墻用2.5米高的彩色鋼板,兩側(cè)墻用2.5米的高的復(fù)合鋼板.兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米.用鋼板的長度乘以單價就是這塊鋼板的價格).已知彩色鋼板每米單價為450元.復(fù)合鋼板每米單價為200元,房的地面不需另買材料,房頂用其它材料建造,每平方米材料費200元,每套房的材料費控制在32000元以內(nèi).(1)設(shè)房前面墻的長為x(米),兩側(cè)墻的長為y(米),建造一套房所需材料費為P(元),試用x,y表示P;(2)試求一套簡易房面積S的最大值是多少?當S最大時,前面墻的長度應(yīng)設(shè)計為多少米?參考答案:【考點】基本不等式在最值問題中的應(yīng)用.【分析】(1)根據(jù)題意可分別求得前面墻,兩側(cè)墻和房頂?shù)馁M用,三者相加即可求得P.(2)利用P的表達式和基本不等式求得關(guān)于的不等式關(guān)系,求得的范圍,以及等號成立條件求得x的值.【解答】解:(1)依題得,p=2x×450+2y×200+xy×200=900x+400y+200xy即p=900x+400y+200xy;(2)∵S=xy,∴p=900x+400y+200xy≥+200S=200S+1200,又因為p≤3200,所以200S+1200≤3200,解得﹣16≤≤10,∵S>0,∴0<S≤100,當且僅當,即x=時S取得最大值.答:每套簡易房面積S的最大值是100平方米,當S最大時前面墻的長度是米.19.已知函數(shù)f(x)=(a、b為常數(shù)),且f(1)=,f(0)=0.(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)判斷函數(shù)f(x)在定義域上的奇偶性,并證明;(Ⅲ)對于任意的x∈[0,2],f(x)(2x+1)<m?4x恒成立,求實數(shù)m的取值范圍.參考答案:【考點】函數(shù)恒成立問題.【專題】函數(shù)的性質(zhì)及應(yīng)用;不等式的解法及應(yīng)用.【分析】(Ⅰ)運用代入法,得到a,b的方程,解得a,b,可得f(x)的解析式;(Ⅱ)函數(shù)f(x)為奇函數(shù).運用奇函數(shù)的定義,即可得證;(Ⅲ)f(x)(2x+1)<m?4x恒成立,即為2x﹣1<m?4x,運用參數(shù)分離和換元法,結(jié)合指數(shù)函數(shù)和二次函數(shù)的值域,可得右邊的最大值,即可得到m的范圍.【解答】解:(Ⅰ)由已知可得,,解得a=1,b=﹣1,所以;(Ⅱ)函數(shù)f(x)為奇函數(shù).證明如下:f(x)的定義域為R,∵,∴函數(shù)f(x)為奇函數(shù);
(Ⅲ)∵,∴,∴2x﹣1<m?4x∴=g(x),故對于任意的x∈[0,2],f(x)(2x+1)<m?4x恒成立等價于m>g(x)max令,則y=t﹣t2,則當時,故,即m的取值范圍為.【點評】本題主要考查函數(shù)的解析式、奇偶性等基礎(chǔ)知識,考查運算求解能力、推理論證能力,抽象概括能力,考查化歸的思想.20.在直角坐標系xOy中,圓C的參數(shù)方程(φ為參數(shù)),以原點O為極點,x軸的正半軸為極軸,建立極坐標系.(1)求圓C的普通方程和極坐標方程;(2)射線OM:θ=與圓C的交于O、P兩點,求P的極坐標.參考答案:【考點】Q4:簡單曲線的極坐標方程.【分析】(1)利用三種方程的轉(zhuǎn)化方法,即可求圓C的普通方程和極坐標方程;(2)射線OM:θ=與圓C的交于O、P兩點,則ρ=,即可求P的極坐標.【解答】解:(1)圓C的參數(shù)方程(φ為參數(shù)),普通方程為(x﹣1)2+y2=1,即x2+y2=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電商合作條款合同
- 購銷合同英文版翻譯
- 坐月子中心服務(wù)合同范本
- 標準居間合同協(xié)議格式
- 詳盡大理石采購合同指南
- 銀行協(xié)定存款合同樣式
- 藥品購銷合同的合同證據(jù)收集與保全
- 演出期間創(chuàng)意設(shè)計合同
- 雨傘連鎖銷售協(xié)議
- 工程安全監(jiān)督合同
- 小兒靜脈留置針操作與護理
- 期末試卷(試題)-2024-2025學年三年級上冊數(shù)學蘇教版
- 水資源基礎(chǔ)調(diào)查項目招標文件
- 中歐班列課件
- 英語四級模擬試題(附答案)
- 2024智慧城市數(shù)據(jù)分類標準規(guī)范
- 《國家中長期教育改革和發(fā)展規(guī)劃綱要》-20211107172134
- 綠化工程售后服務(wù)方案
- 文玩交易合同(2篇)
- 北京西城實小2024-2025學年六年級數(shù)學第一學期期末綜合測試試題含解析
- 2024-2030年炔草酯全產(chǎn)業(yè)競爭狀況監(jiān)測及未來需求趨勢分析報告(-版)
評論
0/150
提交評論