四川省什邡市城南校2024年中考數(shù)學模擬精編試卷含解析_第1頁
四川省什邡市城南校2024年中考數(shù)學模擬精編試卷含解析_第2頁
四川省什邡市城南校2024年中考數(shù)學模擬精編試卷含解析_第3頁
四川省什邡市城南校2024年中考數(shù)學模擬精編試卷含解析_第4頁
四川省什邡市城南校2024年中考數(shù)學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省什邡市城南校2024年中考數(shù)學模擬精編試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.在中,,,,則的值是()A. B. C. D.2.如圖,立體圖形的俯視圖是A. B. C. D.3.如圖,在直角坐標系中,直線與坐標軸交于A、B兩點,與雙曲線()交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①;②當0<x<3時,;③如圖,當x=3時,EF=;④當x>0時,隨x的增大而增大,隨x的增大而減?。渲姓_結(jié)論的個數(shù)是()A.1 B.2 C.3 D.44.如圖,取一張長為、寬為的長方形紙片,將它對折兩次后得到一張小長方形紙片,若要使小長方形與原長方形相似,則原長方形紙片的邊應(yīng)滿足的條件是()A. B. C. D.5.下列各式中的變形,錯誤的是(()A.2-3x=-23x B.-b6.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.7.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+38.定義運算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數(shù)y=2※x的圖象大致是()A. B.C. D.9.已知空氣的單位體積質(zhì)量是0.001239g/cm3,則用科學記數(shù)法表示該數(shù)為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm310.某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實驗最有可能的是()A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”B.擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃D.拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上二、填空題(本大題共6個小題,每小題3分,共18分)11.如果x+y=5,那么代數(shù)式的值是______.12.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.13.分解因式:=___________.14.如圖,A、B是反比例函數(shù)y=(k>0)圖象上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.15.如圖,隨機閉合開關(guān),,中的兩個,能讓兩盞燈泡和同時發(fā)光的概率為___________.16.如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F(xiàn)兩點.若AC=,∠AEO=120°,則FC的長度為_____.三、解答題(共8題,共72分)17.(8分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結(jié)果保留根號).18.(8分)閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).19.(8分)我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)20.(8分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.21.(8分)某高中學校為高一新生設(shè)計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長?(材質(zhì)及其厚度等暫忽略不計).22.(10分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側(cè)),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關(guān)于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關(guān)于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關(guān)于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結(jié)合圖象,直接寫出t的取值范圍:______;③當直線x=t經(jīng)過點A時,“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.23.(12分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.24.矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.2、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.3、C【解析】試題分析:對于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項①正確;∴C(2,2),把C坐標代入反比例解析式得:k=4,即,由函數(shù)圖象得:當0<x<2時,,選項②錯誤;當x=3時,,,即EF==,選項③正確;當x>0時,隨x的增大而增大,隨x的增大而減小,選項④正確,故選C.考點:反比例函數(shù)與一次函數(shù)的交點問題.4、B【解析】

由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,然后根據(jù)相似多邊形的定義,列出比例式即可求出結(jié)論.【詳解】解:由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,∵小長方形與原長方形相似,故選B.【點睛】此題考查的是相似三角形的性質(zhì),根據(jù)相似三角形的定義列比例式是解決此題的關(guān)鍵.5、D【解析】

根據(jù)分式的分子分母都乘以(或除以)同一個不為零的數(shù)(整式),分式的值不變,可得答案.【詳解】A、2-3B、分子、分母同時乘以﹣1,分式的值不發(fā)生變化,故B正確;C、分子、分母同時乘以3,分式的值不發(fā)生變化,故C正確;D、yx≠y故選:D.【點睛】本題考查了分式的基本性質(zhì),分式的分子分母都乘以(或除以)同一個不為零的數(shù)(整式),分式的值不變.6、C【解析】

作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).7、D【解析】

直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關(guān)鍵.8、C【解析】

根據(jù)定義運算“※”為:a※b=,可得y=2※x的函數(shù)解析式,根據(jù)函數(shù)解析式,可得函數(shù)圖象.【詳解】解:y=2※x=,當x>0時,圖象是y=對稱軸右側(cè)的部分;當x<0時,圖象是y=對稱軸左側(cè)的部分,所以C選項是正確的.【點睛】本題考查了二次函數(shù)的圖象,利用定義運算“※”為:a※b=得出分段函數(shù)是解題關(guān)鍵.9、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數(shù)法—表示較小的數(shù).10、B【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.17附近波動,即其概率P≈0.17,計算四個選項的概率,約為0.17者即為正確答案.【詳解】解:在“石頭、剪刀、布”的游戲中,小明隨機出剪刀的概率是,故A選項錯誤,擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4的概率是≈0.17,故B選項正確,一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃得概率是,故C選項錯誤,拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上的概率是,故D選項錯誤,故選B.【點睛】此題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

先將分式化簡,然后將x+y=1代入即可求出答案【詳解】當x+y=1時,原式=x+y=1,故答案為:1.【點睛】本題考查分式的化簡求值,解題的關(guān)鍵是利用運用分式的運算法則求解代數(shù)式.12、1【解析】

根據(jù)相似三角形的對應(yīng)邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應(yīng)邊的比相等是解題的關(guān)鍵.13、【解析】

直接利用完全平方公式分解因式得出答案.【詳解】解:=,故答案為.【點睛】此題主要考查了公式法分解因式,正確應(yīng)用完全平方公式是解題關(guān)鍵.14、2【解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.15、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與能讓兩盞燈泡同時發(fā)光的情況,再利用概率公式求解即可求得答案.【詳解】解:畫樹狀圖得:由樹狀圖得:共有6種結(jié)果,且每種結(jié)果的可能性相同,其中能讓兩盞燈泡同時發(fā)光的是閉合開關(guān)為:K1、K3與K3、K1共兩種結(jié)果,∴能讓兩盞燈泡同時發(fā)光的概率,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.16、1【解析】

先根據(jù)矩形的性質(zhì),推理得到OF=CF,再根據(jù)Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,

∴∠EDO=30°,∠DEO=60°,

∵四邊形ABCD是矩形,

∴∠OBF=∠OCF=30°,∠BFO=60°,

∴∠FOC=60°-30°=30°,

∴OF=CF,

又∵Rt△BOF中,BO=BD=AC=,

∴OF=tan30°×BO=1,

∴CF=1,

故答案為:1.【點睛】本題考查矩形的性質(zhì)以及解直角三角形的運用,解題關(guān)鍵是掌握:矩形的對角線相等且互相平分.三、解答題(共8題,共72分)17、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解析】

如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.18、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如圖3中,將AE繞點E逆時針旋轉(zhuǎn)m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.點睛:本題考查幾何變換綜合題、旋轉(zhuǎn)變換、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用“手拉手”圖形中的全等三角形解決問題,學會構(gòu)造“手拉手”模型,解決實際問題,屬于中考壓軸題.19、隧道最短為1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】如圖,作BD⊥AC于D,由題意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米),在Rt△BCD中,∵tan45°=,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短為1093米.【點睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)建直角三角形是解題的關(guān)鍵.20、(1)點B的坐標為(1,0).(2)①點P的坐標為(4,21)或(-4,5).②線段QD長度的最大值為.【解析】

(1)由拋物線的對稱性直接得點B的坐標.(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標,得到,設(shè)出點P的坐標,根據(jù)列式求解即可求得點P的坐標.②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設(shè)點Q的坐標為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標為(q,q2+2q-3),從而線段QD等于兩點縱坐標之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關(guān)于對稱軸對稱,且A點的坐標為(-3,0),∴點B的坐標為(1,0).(2)①∵拋物線,對稱軸為,經(jīng)過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標為(0,-3).∴OB=1,OC=3.∴.設(shè)點P的坐標為(p,p2+2p-3),則.∵,∴,解得.當時;當時,,∴點P的坐標為(4,21)或(-4,5).②設(shè)直線AC的解析式為,將點A,C的坐標代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設(shè)點Q的坐標為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.21、44cm【解析】解:如圖,設(shè)BM與AD相交于點H,CN與AD相交于點G,由題意得,MH=8cm,BH=40cm,則BM=32cm,∵四邊形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM+BC=44(cm).答:橫梁EF應(yīng)為44cm.根據(jù)等腰梯形的性質(zhì),可得AH=DG,EM=NF,先求出AH、GD的長度,再由△BEM∽△BAH,可得出EM,繼而得出EF的長度.22、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解析】

(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數(shù)即可;②將y=3代入拋物線的解析式求得對應(yīng)的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結(jié)合函數(shù)圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數(shù)解析式可求得點P的橫坐標.【詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖形”有3個交點,故答案為3;②將y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函數(shù)圖象可知:當0<t<1時,拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,故答案為0<t<1.③如圖2所示:∵PQ∥AC且PQ=AC,∴四邊形ACQP為平行四邊形,又∵點C的縱坐標為-1,∴點P的縱坐標為1,將y=1代入拋物線的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.∴點P的坐標為(+2,1)或(-+2,1),當點P(-1,0)時,也滿足條件.綜上所述,滿足條件的點(+2,1)或(-+2,1)或(-1,0)【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題需要同學們理解“L雙拋圖形”的定義,數(shù)形結(jié)合以及方程思想的應(yīng)用是解題的關(guān)鍵.23、(1)25π;(2)點B的坐標為或;(3)m≤-5或m≥2【解析】

(1)根據(jù)勾股定理,可得AB的長,根據(jù)圓的面積公式,可得答案;(2)根據(jù)確定圓,可得l與⊙A相切,根據(jù)圓的面積,可得AB的長為3,根據(jù)等腰直角三角形的性質(zhì),可得,可得答案;(3)根據(jù)圓心與直線垂直時圓心到直線的距離最短,根據(jù)確定圓的面積,可得PB的長,再根據(jù)30°的直角邊等于斜邊的一半,可得CA的長.【詳解】(1)(1)∵A的坐標為(?1,0),B的坐標為(3,3),∴AB==5,根據(jù)題意得點A,B的“確定圓”半徑為5,∴S圓=π×52=25π.故答案為25π;(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,∴⊙A的半

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論