重慶市長壽區(qū)市級名校2024屆中考聯考數學試卷含解析_第1頁
重慶市長壽區(qū)市級名校2024屆中考聯考數學試卷含解析_第2頁
重慶市長壽區(qū)市級名校2024屆中考聯考數學試卷含解析_第3頁
重慶市長壽區(qū)市級名校2024屆中考聯考數學試卷含解析_第4頁
重慶市長壽區(qū)市級名校2024屆中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市長壽區(qū)市級名校2024屆中考聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.2.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.3.若關于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>54.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點,將△ABC沿DE折疊,使點B落在AC邊上點F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.95.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體6.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)7.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊8.某自行車廠準備生產共享單車4000輛,在生產完1600輛后,采用了新技術,使得工作效率比原來提高了20%,結果共用了18天完成任務,若設原來每天生產自行車x輛,則根據題意可列方程為()A.+=18 B.=18C.+=18 D.=189.姜老師給出一個函數表達式,甲、乙、丙三位同學分別正確指出了這個函數的一個性質.甲:函數圖像經過第一象限;乙:函數圖像經過第三象限;丙:在每一個象限內,y值隨x值的增大而減?。鶕麄兊拿枋觯蠋熃o出的這個函數表達式可能是()A. B. C. D.10.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:|﹣3|+(﹣1)2=.12.計算兩個兩位數的積,這兩個數的十位上的數字相同,個位上的數字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發(fā)現上面每個數的積的規(guī)律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的,請寫出一個符合上述規(guī)律的算式.(2)設其中一個數的十位數字為a,個位數字為b,請用含a,b的算式表示這個規(guī)律.13.如圖,每一幅圖中有若干個大小不同的菱形,第1幅圖中有1個,第2幅圖中有3個,第3幅圖中有5個,則第4幅圖中有_____個,第n幅圖中共有_____個.14.化簡的結果是_______________.15.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.16.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.三、解答題(共8題,共72分)17.(8分)某校團委為研究該校學生的課余活動情況,采取抽樣調查的方法,從閱讀、運動、娛樂、其他等四個方面調查了若干名學生的興趣愛好,并將調查的結果繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息解答下列各題:(1)在這次研究中,一共調查了多少名學生?(2)“其他”在扇形統(tǒng)計圖中所占的圓心角是多少度?(3)補全頻數分布直方圖;(4)該校共有3200名學生,請你估計一下全校大約有多少學生課余愛好是閱讀.18.(8分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.19.(8分)在某小學“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現,分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結論的概率是多少?(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結論,則小選手可入圍進入復賽,問琪琪進入復賽的概率是多少?20.(8分)如圖,二次函數的圖像與軸交于、兩點,與軸交于點,.點在函數圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最???如果存在,求出點的坐標;如果不存在,說明理由.21.(8分)如圖,AB是⊙O的直徑,點C是AB的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且OEEB求證:BD是⊙O的切線;(2)當OB=2時,求BH的長.22.(10分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯結DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.23.(12分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.24.如圖,用紅、藍兩種顏色隨機地對A,B,C三個區(qū)域分別進行涂色,每個區(qū)域必須涂色并且只能涂一種顏色,請用列舉法(畫樹狀圖或列表)求A,C兩個區(qū)域所涂顏色不相同的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.2、C【解析】

根據∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據相似三角形對應邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.3、B【解析】試題解析:∵關于x的一元二次方程方程有兩個不相等的實數根,∴,即,解得:k<5且k≠1.故選B.4、C【解析】

由折疊得到EB=EF,∠B=∠DFE,根據CE+EB=9,得到CE+EF=9,設EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內錯角相等,等量代換得到一對同位角相等,進而確定出EF與AB平行,由平行得比例,即可求出AB的長.【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設EF=EB=x,得到CE=BC-EB=9-x,根據勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點睛】此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質,平行線分線段成比例,熟練掌握折疊的性質是解本題的關鍵.5、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.6、A【解析】

∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.7、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數及形狀,從主視圖和左視圖可以看出每一層小正方體的層數和個數,從而算出總的個數.解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.8、B【解析】

根據前后的時間和是18天,可以列出方程.【詳解】若設原來每天生產自行車x輛,根據前后的時間和是18天,可以列出方程.故選B【點睛】本題考核知識點:分式方程的應用.解題關鍵點:根據時間關系,列出分式方程.9、B【解析】y=3x的圖象經過一三象限過原點的直線,y隨x的增大而增大,故選項A錯誤;y=的圖象在一、三象限,在每個象限內y隨x的增大而減小,故選項B正確;y=?的圖象在二、四象限,故選項C錯誤;y=x2的圖象是頂點在原點開口向上的拋物線,在一、二象限,故選項D錯誤;故選B.10、B【解析】

作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.【解析】

|﹣3|+(﹣1)2=4,故答案為4.12、(1)十位和個位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根據題意得出其一般性的規(guī)律,從而得出答案;(2)、利用代數式表示出其一般規(guī)律得出答案.詳解:(1)由已知等式知,每個數的積的規(guī)律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的十位和個位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點睛:本題主要考查的是規(guī)律的發(fā)現與整理,屬于基礎題型.找出一般性的規(guī)律是解決這個問題的關鍵.13、72n﹣1【解析】

根據題意分析可得:第1幅圖中有1個,第2幅圖中有2×2-1=3個,第3幅圖中有2×3-1=5個,…,可以發(fā)現,每個圖形都比前一個圖形多2個,繼而即可得出答案.【詳解】解:根據題意分析可得:第1幅圖中有1個.

第2幅圖中有2×2-1=3個.

第3幅圖中有2×3-1=5個.

第4幅圖中有2×4-1=7個.

….

可以發(fā)現,每個圖形都比前一個圖形多2個.

故第n幅圖中共有(2n-1)個.

故答案為7;2n-1.點睛:考查規(guī)律型中的圖形變化問題,難度適中,要求學生通過觀察,分析、歸納并發(fā)現其中的規(guī)律.14、【解析】

先將分式進行通分,即可進行運算.【詳解】=-=【點睛】此題主要考查分式的加減,解題的關鍵是先將它們通分.15、【解析】如圖,有5種不同取法;故概率為.16、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質與判定、含30°直角三角形的性質以及直角三角形斜邊的中線的性質.此題難度適中,屬于中考常見題型,求出OP的長是解題關鍵.三、解答題(共8題,共72分)17、(1)總調查人數是100人;(2)在扇形統(tǒng)計圖中“其它”類的圓心角是36°;(3)補全頻數分布直方圖見解析;(4)估計一下全校課余愛好是閱讀的學生約為960人.【解析】

(1)利用參加運動的人數除以其所占的比例即可求得這次調查的總人數;(2)用360°乘以“其它”類的人數所占的百分比即可求解;(3)求得“其它”類的人數、“娛樂”類的人數,補全統(tǒng)計圖即可;(4)用總人數乘以課余愛好是閱讀的學生人數所占的百分比即可求解.【詳解】(1)從條形統(tǒng)計圖中得出參加運動的人數為20人,所占的比例為20%,∴總調查人數=20÷20%=100人;(2)參加娛樂的人數=100×40%=40人,從條形統(tǒng)計圖中得出參加閱讀的人數為30人,∴“其它”類的人數=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形統(tǒng)計圖中“其它”類的圓心角=360×10%=36°;(3)如圖(4)估計一下全校課余愛好是閱讀的學生約為3200×=960(人).【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖的應用,從條形統(tǒng)計圖、扇形統(tǒng)計圖中獲取必要的信息是解決問題的關鍵.18、(1)見解析;(2)1【解析】

(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質得OD⊥DF,則根據等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以OH=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,∵D是弧BC的中點,∴OD⊥BC,∴CH=BH,∴OH為△ABC的中位線,∴,∴HD=2.5-1.5=1,∵AB為⊙O的直徑,∴∠ACB=90°,∴四邊形DHCE為矩形,∴CE=DH=1.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理.19、(1)見解析;(2);(3).【解析】

(1)根據列樹狀圖的步驟和題意分析所有等可能的出現結果,即可畫出圖形;(2)根據(1)求出甲、乙兩位評委給出相同結論的情況數,再根據概率公式即可求出答案;(3)根據(1)即可求出琪琪進入復賽的概率.【詳解】(1)畫樹狀圖如下:(2)∵共有8種等可能結果,只有甲、乙兩位評委給出相同結論的有2種可能,∴只有甲、乙兩位評委給出相同結論的概率P=;(3)∵共有8種等可能結果,三位評委中至少有兩位給出“通過”結論的有4種可能,∴樂樂進入復賽的概率P=.【點睛】此題考查了列樹狀圖,掌握列樹狀圖的步驟,找出三位評委給出相同結論的情況數是本題的關鍵,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P=.20、(1),;(2)點的坐標為;(3)點的坐標為和【解析】

(1)根據二次函數的對稱軸公式,拋物線上的點代入,即可;(2)先求F的對稱點,代入直線BE,即可;(3)構造新的二次函數,利用其性質求極值.【詳解】解:(1)軸,,拋物線對稱軸為直線點的坐標為解得或(舍去),(2)設點的坐標為對稱軸為直線點關于直線的對稱點的坐標為.直線經過點利用待定系數法可得直線的表達式為.因為點在上,即點的坐標為(3)存在點滿足題意.設點坐標為,則作垂足為①點在直線的左側時,點的坐標為點的坐標為點的坐標為在中,時,取最小值.此時點的坐標為②點在直線的右側時,點的坐標為同理,時,取最小值.此時點的坐標為綜上所述:滿足題意得點的坐標為和考點:二次函數的綜合運用.21、(1)證明見解析;(2)BH=125【解析】

(1)先判斷出∠AOC=90°,再判斷出OC∥BD,即可得出結論;(2)先利用相似三角形求出BF,進而利用勾股定理求出AF,最后利用面積即可得出結論.【詳解】(1)連接OC,∵AB是⊙O的直徑,點C是AB的中點,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位線,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵點B在⊙O上,∴BD是⊙O的切線;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根據勾股定理得,AF=5,∵S△ABF=12AB?BF=1∴AB?BF=AF?BH,∴4×3=5BH,∴BH=125【點睛】此題主要考查了切線的判定和性質,三角形中位線的判定和性質,相似三角形的判定和性質,求出BF=3是解本題的關鍵.22、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】

(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論