2024屆河南省舞鋼市八年級數(shù)學第二學期期末復習檢測模擬試題含解析_第1頁
2024屆河南省舞鋼市八年級數(shù)學第二學期期末復習檢測模擬試題含解析_第2頁
2024屆河南省舞鋼市八年級數(shù)學第二學期期末復習檢測模擬試題含解析_第3頁
2024屆河南省舞鋼市八年級數(shù)學第二學期期末復習檢測模擬試題含解析_第4頁
2024屆河南省舞鋼市八年級數(shù)學第二學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省舞鋼市八年級數(shù)學第二學期期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,將一個含角的直角三角板繞點旋轉,得點,,,在同一條直線上,則旋轉角的度數(shù)是()A. B. C. D.2.在下列各式中,是分式的有()A.2個 B.3個 C.4個 D.5個3.如圖,將平行四邊形ABCD繞點A逆時針旋轉40°,得到平行四邊形AB′C′D′,若點B′恰好落在BC邊上,則∠DC′B′的度數(shù)為(

)A.60° B.65° C.70° D.75°4.如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F.則EF的最小值為()A.4 B.4.8 C.5.2 D.65.下列根式中,與是同類二次根式的是()A. B. C. D.6.下列各組線段能構成直角三角形的是()A. B. C. D.7.如圖,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,則AB等于()A.9cm B.8cm C.7cm D.6cm8.如圖1,在矩形ABCD中,動點P從點B出發(fā),沿BC、CD、DA運動至點A停止,設點P運動的路程為x,△ABP的面積為y,如果y關于x的函數(shù)圖象如圖2所示,則△ABC的面積是()A.10 B.16 C.18 D.209.如圖,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分線,過點D作DE⊥BD交BC邊于點E.若AD=1,則圖中陰影部分面積為()A.1 B.1.5 C.2 D.2.510.下列根式是最簡二次根式的是()A.2 B.23 C.9 D.11.中國藥學家屠呦呦獲2015年諾貝爾醫(yī)學獎,她的突出貢獻是創(chuàng)制新型抗瘧藥青蒿素和雙氫青蒿素,這是中國醫(yī)學界迄今為止獲得的最高獎項,已知顯微鏡下某種瘧原蟲平均長度為0.0000015米,該長度用科學記數(shù)法可表示為()A.米 B.米 C.米 D.米12.某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同.設原計劃平均每天生產(chǎn)x臺機器,根據(jù)題意,下面所列方程正確的是()A.= B.=C.= D.=二、填空題(每題4分,共24分)13.若分式的值是0,則x的值為________.14.如圖,四邊形ABCD中,E、F、G、H分別為各邊的中點,順次連結E、F、G、H,把四邊形EFGH稱為中點四邊形.連結AC、BD,容易證明:中點四邊形EFGH一定是平行四邊形.(1)如果改變原四邊形ABCD的形狀,那么中點四邊形的形狀也隨之改變,通過探索可以發(fā)現(xiàn):當四邊形ABCD的對角線滿足AC=BD時,四邊形EFGH為菱形;當四邊形ABCD的對角線滿足時,四邊形EFGH為矩形;當四邊形ABCD的對角線滿足時,四邊形EFGH為正方形.(2)試證明:S△AEH+S△CFG=S□ABCD(3)利用(2)的結論計算:如果四邊形ABCD的面積為2012,那么中點四邊形EFGH的面積是(直接將結果填在橫線上)15.如圖,F(xiàn)是△ABC內(nèi)一點,BF平分∠ABC且AF⊥BF,E是AC中點,AB=6,BC=8,則EF的長等于____.16.如圖,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,則平移的距離是_____.17.如圖,△ABC,∠A=90°,AB=AC.在△ABC內(nèi)作正方形A1B1C1D1,使點A1,B1分別在兩直角邊AB,AC上,點C1,D1在斜邊BC上,用同樣的方法,在△C1B1B內(nèi)作正方形A2B2C2D2;在△CB2C2內(nèi)作正方形A3B3C3D3……,若AB=1,則正方形A2018B2018C2018D2018的邊長為_____.18.某市某一周的PM2.5(大氣中直徑小于等于2.5微米的顆粒物,也稱可入肺顆粒物指數(shù)如表,則該周PM2.5指數(shù)的眾數(shù)和中位數(shù)分別是________PM2.5指數(shù)150155160165天數(shù)3211三、解答題(共78分)19.(8分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,點D為OA中點,DC⊥OB,垂足為C,連接BD,點M為線段BD中點,連接AM、CM,如圖①.(1)求證:AM=CM;(2)將圖①中的△OCD繞點O逆時針旋轉90°,連接BD,點M為線段BD中點,連接AM、CM、OM,如圖②.①求證:AM=CM,AM⊥CM;②若AB=4,求△AOM的面積.20.(8分)如圖,在平面直角坐標系xOy中,已知直線AB:yx+4交x軸于點A,交y軸于點B.直線CD:yx﹣1與直線AB相交于點M,交x軸于點C,交y軸于點D.(1)直接寫出點B和點D的坐標;(2)若點P是射線MD上的一個動點,設點P的橫坐標是x,△PBM的面積是S,求S與x之間的函數(shù)關系;(3)當S=20時,平面直角坐標系內(nèi)是否存在點E,使以點B、E、P、M為頂點的四邊形是平行四邊形?若存在,請直接寫出所有符合條件的點E的坐標;若不存在,說明理由.21.(8分)已知關于x的方程x1﹣(1k+1)x+k1﹣1=0有兩個實數(shù)根x1,x1.(1)求實數(shù)k的取值范圍;(1)若方程的兩個實數(shù)根x1,x1滿足,求k的值.22.(10分)如圖,在正方形網(wǎng)格中每個小正方形的邊長為1,小正方形的頂點稱為格點,在正方形網(wǎng)格中分別畫出下列圖形:(1)在圖(1)網(wǎng)格中畫出長為的線段AB.(2)在圖(2)網(wǎng)格中畫出一個腰長為,面積為3的等腰23.(10分)我國是世界上嚴重缺水的國家之一,2011年春季以來,我省遭受了嚴重的旱情,某校為了組織“節(jié)約用水從我做起”活動,隨機調(diào)查了本校120名同學家庭月人均用水量和節(jié)水措施情況,如圖1、圖2是根據(jù)調(diào)查結果做出的統(tǒng)計圖的一部分.請根據(jù)信息解答下列問題:(1)圖1中淘米水澆花所占的百分比為;(2)圖1中安裝節(jié)水設備所在的扇形的圓心角度數(shù)為;(3)補全圖2;(4)如果全校學生家庭總人數(shù)為3000人,根據(jù)這120名同學家庭月人均用水量,估計全校學生家庭月用水總量是多少噸?24.(10分)由邊長為1的小正方形組成的格點中,建立如圖平面直角坐標系,△ABC的三個頂點坐標分別為A(?2,1),B(?4,5),C(?5,2).(1)請畫出△ABC關于y軸對稱的△ABC;(2)畫出△ABC關于原點O成中心對稱的△ABC;(3)請你判斷△AAA與△CCC的相似比;若不相似,請直接寫出△AAA的面積.25.(12分)如圖,四邊形是正方形,是邊所在直線上的點,,且交正方形外角的平分線于點.(1)當點在線段中點時(如圖①),易證,不需證明;(2)當點在線段上(如圖②)或在線段延長線上(如圖③)時,(1)中的結論是否仍然成立?請寫出你的猜想,并選擇圖②或圖③的一種結論給予證明.26.如圖,函數(shù)y=﹣2x+3與y=﹣x+m的圖象交于P(n,﹣2).(1)求出m、n的值;(2)求出△ABP的面積.

參考答案一、選擇題(每題4分,共48分)1、D【解析】

根據(jù)題中“直角三角板繞點旋轉”可知,本題考查圖形的旋轉,根據(jù)圖形旋轉的規(guī)律,運用旋轉不改變圖形的大小、旋轉圖形對應角相等,進行求解.【詳解】解:三角形是由三角形ABC旋轉得到.故應選D【點睛】本題解題關鍵:理解旋轉之后的圖形與原圖形對應角相等.2、B【解析】

依據(jù)分式的定義即可判斷.【詳解】(x+3)÷(x-1)=,,(x+3)÷(x-1)=,這3個式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故式子中是分式的有3個.故選:B.【點睛】此題考查了分式的定義,熟練掌握分式的定義是解題得到關鍵.3、C【解析】

先根據(jù)旋轉得出△ABB'是等腰三角形,再根據(jù)旋轉的性質(zhì)以及平行四邊形的性質(zhì),判定三角形AOB'和△DOC'都是等腰三角形,最后根據(jù)∠DOC'的度數(shù),求得∠DC'B'的度數(shù).【詳解】由旋轉得,∠BAB'=40°,AB=AB',∠B=∠AB'C',∴∠B=∠AB'B=∠AB'C'=70°,∵AD∥BC,∴∠DAB'=∠AB'C'=70°,∴AO=B'O,∠AOB=∠DOC'=40°,又∵AD=B'C',∴OD=OC',∴△ODC'中,∠DC'O=故選C.【點睛】考查了旋轉的性質(zhì),解決問題的關鍵是掌握等腰三角形的性質(zhì)與平行四邊形的性質(zhì).在旋轉過程中,對應點到旋轉中心的距離相等,對應點與旋轉中心所連線段的夾角等于旋轉角.4、B【解析】

試題解析:如圖,連接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于點E,PF⊥AC于點F.∴∠AEP=∠AFP=90°,∴四邊形PEAF是矩形.∴AP=EF.∴當PA最小時,EF也最小,即當AP⊥CB時,PA最小,∵AB?AC=BC?AP,即AP==4.8,∴線段EF長的最小值為4.8;故選B.考點:1.勾股定理、矩形的判定與性質(zhì)、垂線段最短.5、C【解析】

根據(jù)同類二次根式的定義,先化簡,再判斷.【詳解】A.與被開方數(shù)不同,故不是同類二次根式;B.與被開方數(shù)不同,故不是同類二次根式;C.與被開方數(shù)相同,故是同類二次根式;D.與被開方數(shù)不同,故不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的定義:化成最簡二次根式后,被開方數(shù)相同,這樣的二次根式叫做同類二次根式.6、D【解析】

欲求證是否為直角三角形,這里給出三邊的長,只要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】A、12+22≠22,不能構成直角三角形;B、72+122≠132,不能構成直角三角形;C、52+82≠102,不能構成直角三角形;D、,能構成直角三角形.故選:D.【點睛】本題考查勾股定理的逆定理的應用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.勾股定理的逆定理:若三角形三邊滿足a2+b2=c2,那么這個三角形是直角三角形.7、B【解析】

根據(jù)含30度角的直角三角形的性質(zhì)即可求出答案.【詳解】直角三角形中,30°所對的邊的長度是斜邊的一半,所以AB=2BC=8cm.故選B.【點睛】本題考查含30度角的直角三角形,解題的關鍵是熟練運用30度角的直角三角形的性質(zhì),本題屬于基礎題型.8、A【解析】

點P從點B運動到點C的過程中,y與x的關系是一個一次函數(shù),運動路程為4時,面積發(fā)生了變化,說明BC的長為4,當點P在CD上運動時,三角形ABP的面積保持不變,就是矩形ABCD面積的一半,并且動路程由4到9,說明CD的長為5,然后求出矩形的面積.【詳解】解:∵當4≤x≤9時,y的值不變即△ABP的面積不變,P在CD上運動當x=4時,P點在C點上所以BC=4當x=9時,P點在D點上∴BC+CD=9∴CD=9-4=5∴△ABC的面積S=AB×BC=×4×5=10故選A.【點睛】本題考查的是動點問題的函數(shù)圖象,根據(jù)矩形中三角形ABP的面積和函數(shù)圖象,求出BC和CD的長,再用矩形面積公式求出矩形的面積.9、B【解析】

作DH⊥BC于H,得到△DEB是等腰直角三角形,設DH=BH=EH=a,證明△CDH∽△CAB,得到,求得AB=,CE=2a,根據(jù)得到,利用陰影面積=求出答案.【詳解】作DH⊥BC于H,∵∠ABC=90°,BD是△ABC的角平分線,∴∠ABD=∠DBC=45°,∴△DEB是等腰直角三角形,設DH=BH=EH=a,∵DH∥AB,∴△CDH∽△CAB,∴,∵AD=1,∴AC=4,∴,∴AB=,CE=2a,∵,∴,∴=1,∴,∴圖中陰影部分的面積====故選:B.【點睛】此題考查等腰直角三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),求不規(guī)則圖形的面積,根據(jù)陰影圖形的特點確定求面積的方法進而進行計算是解答問題的關鍵.10、A【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、3是最簡二次根式,符合題意;B、23=6C、9=3,不符合題意;D、12=23,不符合題意;故選A.【點睛】本題考查最簡二次根式的定義.根據(jù)最簡二次根式的定義,最簡二次根式必須滿足兩個條件:(1)被開方數(shù)不含分母;(2)被開方數(shù)不含能開得盡方的因數(shù)或因式.11、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.0000015=1.5×10-6,

故選:A.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.12、B【解析】

設原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,根據(jù)題意可得:現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同,據(jù)此列方程即可.【詳解】設原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,由題意得:.故選B.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程.二、填空題(每題4分,共24分)13、3【解析】

根據(jù)分式為0的條件解答即可,【詳解】因為分式的值為0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案為:3【點睛】本題考查分式值為0的條件:分式的分子為0,且分母不為0,熟練掌握分式值為0的條件是解題關鍵.14、;(2)詳見解析;(3)1【解析】

(1)若四邊形EFGH為矩形,則應有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故應有AC⊥BD;若四邊形EFGH為正方形,同上應有AC⊥BD,又應有EH=EF,而EF=AC,EH=BD,故應有AC=BD.

(2)由相似三角形的面積比等于相似比的平方求解.

(3)由(2)可得S?EFGH=S四邊形ABCD=1【詳解】(1)解:若四邊形EFGH為矩形,則應有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故應有AC⊥BD;

若四邊形EFGH為正方形,同上應有AC⊥BD,又應有EH=EF,而EF=AC,EH=BD,故應有AC=BD;

(2)S△AEH+S△CFG=S四邊形ABCD

證明:在△ABD中,

∵EH=BD,

∴△AEH∽△ABD.

∴=()2=

即S△AEH=S△ABD

同理可證:S△CFG=S△CBD

∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四邊形ABCD;(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四邊形ABCD,

同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四邊形ABCD,

故S?EFGH=S四邊形ABCD=1.【點睛】本題考查了三角形的中位線的性質(zhì)及特殊四邊形的判定和性質(zhì),相似三角形的性質(zhì).15、1.【解析】

根據(jù)直角三角形斜邊上中線是斜邊的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,結合角平分線可得∠CBF=∠DFB,即DE∥BC,進而可得DE=4,由EF=DE-DF可得答案.【詳解】∵AF⊥BF,∴∠AFB=90°,∵AB=6,D為AB中點,∴DF=AB=AD=BD=3,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴,即解得:DE=4,∴EF=DE-DF=1,故答案為:1.【點睛】本題主要考查直角三角形的性質(zhì)和相似三角形的判定與性質(zhì),熟練運用其判定與性質(zhì)是解題的關鍵.16、1【解析】

平移的距離為線段BE的長求出BE即可解決問題;【詳解】∵BC=EF=5,EC=3,∴BE=1,∴平移距離是1,故答案為:1.【點睛】本題考查平移的性質(zhì),解題的關鍵是理解題意,靈活運用所學知識解決問題.17、13×(23)【解析】

已知正方形A1B1C1D1的邊長為13,然后得到正方形A2B2C2D2的邊長為,然后得到規(guī)律,即可求解.【詳解】解:∵正方形A1B1C1D1的邊長為13正方形A2B2C2D2的邊長為1正方形A3B3C3D3的邊長為13…,正方形A2018B2018C2018D2018的邊長為13故答案為13【點睛】本題考查了等腰直角三角形的性質(zhì)和正方形的性質(zhì),解題關鍵是靈活應用等腰直角三角形三邊的關系進行幾何計算.18、150,1【解析】

根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)按照從小到大的順序排列為:150,150,150,1,1,160,165,則眾數(shù)為:150,中位數(shù)為:1.故答案為:150,1【點睛】此題考查中位數(shù),眾數(shù),解題關鍵在于掌握其概念三、解答題(共78分)19、(1)見解析;(1)①見解析,②1【解析】

(1)直接利用直角三角形斜邊的中線等于斜邊的一半,即可得出結論;(1)①延長CM交OB于T,先判斷出△CDM≌△TBM得出CM=TM,DC=BT=OC,進而判斷出△OAC≌△BAT,得出AC=AT,即可得出結論;②先利用等腰直角三角形的性質(zhì)求出再求出OD,DC=CO=,再用勾股定理得出CT,進而判斷出CM=AM,得出AM=OM,進而求出ON,再根據(jù)勾股定理求出MN,即可得出結論.【詳解】解:(1)證明:∵∠OAB=90°,∴△ABD是直角三角形,∵點M是BD的中點,∴AM=BD,∵DC⊥OB,∴∠BCD=90°,∵點M是BD的中點,∴CM=BD,∴AM=CM;(1)①如圖②,在圖①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延長CM交OB于T,連接AT,由旋轉知,∠COB=90°,DC∥OB,∴∠CDM=∠TBM,∵點M是BD的中點,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如圖③,在Rt△AOB中,AB=4,∴OA=4,OB==AB=4,在圖①中,點D是OA的中點,∴OD=OA=1,∵△OCD是等腰直角三角形,∴DC=CO=ODsin45°==,由①知,BT=CD,∴BT=,∴OT=OB﹣TB=3,在Rt△OTC中,CT==1,∵CM=TM=CT==AM,∵OM是Rt△COT的斜邊上的中線,∴OM=CT=,∴AM=OM,過點M作MN⊥OA于N,則ON=AN=OA=1,根據(jù)勾股定理得,MN==1,∴S△AOM=OA?MN=×4×1=1.【點睛】此題是幾何變換綜合題,主要考查了旋轉的性質(zhì),直角三角形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理及三角函數(shù)的應用,構造出全等三角形是解本題的關鍵.20、(1)B(0,4),D(0,-1);(2)S(x>-2);(3)存在,滿足條件的點E的坐標為(8,)或(﹣8,)或(﹣2,).【解析】

(1)利用y軸上的點的坐標特征即可得出結論;(2)先求出點M的坐標,再分兩種情況討論:①當P在y軸右邊時,用三角形的面積之和即可得出結論,②當P在y軸左邊時,用三角形的面積之差即可得出結論;(3)分三種情況利用對角線互相平分的四邊形是平行四邊形和線段的中點坐標的確定方法即可得出結論.【詳解】(1)∵點B是直線AB:yx+4與y軸的交點坐標,∴B(0,4).∵點D是直線CD:yx﹣1與y軸的交點坐標,∴D(0,﹣1);(2)如圖1.由,解得:.∵直線AB與CD相交于M,∴M(﹣2,).∵B(0,4),D(0,﹣1),∴BD=2.∵點P在射線MD上,∴分兩種情況討論:①當P在y軸右邊時,即x≥0時,S=S△BDM+S△BDP2(2+x);②當P在y軸左邊時,即-2<x<0時,S=S△BDM-S△BDP2(2-|x|);綜上所述:S=(x>-2).(3)如圖2,由(1)知,S,當S=20時,20,∴x=3,∴P(3,﹣2).分三種情況討論:①當BP是對角線時,取BP的中點G,連接MG并延長取一點E'使GE'=GM,設E'(m,n).∵B(0,4),P(3,﹣2),∴BP的中點坐標為(,1).∵M(﹣2,),∴1,∴m=8,n,∴E'(8,);②當AB為對角線時,同①的方法得:E(﹣8,);③當MP為對角線時,同①的方法得:E''(﹣2,).綜上所述:滿足條件的點E的坐標為(8,)、(﹣8,)、(﹣2,).【點睛】本題是一次函數(shù)綜合題,主要考查了三角形的面積的計算方法,平行四邊形的性質(zhì),解(2)掌握三角形的面積的計算方法,解(3)的關鍵是分類討論的思想解決問題.21、(1);(1)【解析】

(1)根據(jù)判別式的意義可得△=,解不等式即可求出實數(shù)k的取值范圍;(1)利用根與系數(shù)的關系將兩根之和和兩根之積代入代數(shù)式求k的值即可.本題解析:【詳解】解:(1)由題意得:△≥0∴∴(1)由題意得:由得:∴∴或∵∴點睛:本題考查了一元二次方程的根的判別式當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了根與系數(shù)的關系.22、(1)見解析;(2)見解析.【解析】

(1)根據(jù)勾股定理可得直角邊長為2和1的直角三角形斜邊長為;

(2)根據(jù)勾股定理可得直角邊長為3和1的直角三角形斜邊長為,再根據(jù)面積為3確定△DEF.【詳解】解如圖所示圖(1)圖(2)【點睛】此題主要考查了勾股定理的應用,在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.23、【解】(1)15﹪;(2)108°;(3)見解析;(4)全校學生家庭月用水總量是9600噸【解析】

(1)根據(jù)扇形統(tǒng)計圖的特點可知,用1減去其他3種節(jié)水措施所占的百分比即可解答.

(2)用安裝節(jié)水設備所在的扇形的百分比乘360度,即可得出正確答案.

(3)根據(jù)隨機調(diào)查了本校120名同學家庭可知總數(shù)為120,減去其他4組的戶數(shù)得出答案,再畫圖即可解答.

(4)先求出這120名同學家庭月人均用水量,再用樣本估計總體的方法即可解答.【詳解】(1)淘米水澆花所占的百分比為1-30%-44%-11%=15%.

(2)安裝節(jié)水設備所在的扇形的圓心角度數(shù)為360°×30%=108°.

(3)如圖

(4)(1×10+2×42+3×

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論