山東省濟寧市鄒城市九級2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
山東省濟寧市鄒城市九級2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
山東省濟寧市鄒城市九級2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
山東省濟寧市鄒城市九級2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
山東省濟寧市鄒城市九級2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省濟寧市鄒城市九級2024年八年級下冊數(shù)學期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,點P是邊長為2的菱形ABCD對角線AC上的一個動點,點M,N分別是AB,BC邊上的中點,則MP+PN的最小值是()A.1 B.2 C.22 D.2.把一根長的鋼管截成長和長兩種規(guī)格的鋼管,如果保證沒有余料,那么截取的方法有()A.2種 B.3種 C.4種 D.5種3.直角三角形的面積為S,斜邊上的中線長為d,則這個三角形周長為()A. B. C. D.4.不等式3(x-2)≥x+4的解集是(

)A.x≥5 B.x≥3 C.x≤5 D.x≥-55.如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一動點P,則PD+PE的和最小值為()A. B.4 C.3 D.6.方程x2﹣9=0的解是()A.x=3 B.x=9 C.x=±3 D.x=±97.如圖,已知菱形ABCD的周長是24米,∠BAC=30°,則對角線BD的長等于()A.6米 B.3米 C.6米 D.3米8.在平面直角坐標系中,將點先向左平移個單位長度,再向下平移個單位長度,則平移后得到的點是()A. B. C. D.9.若關于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.210.若,,則代數(shù)式的值為A.1 B. C. D.6二、填空題(每小題3分,共24分)11.定理“對角線互相平分的四邊形是平行四邊形”的逆命題是________12.計算的結(jié)果是______.13.為了考察甲、乙兩塊地小麥的長勢,分別從中隨機抽出10株苗,測得苗高如圖所示.若和分別表示甲、乙兩塊地苗高數(shù)據(jù)的方差,則________.(填“>”、“<”或“=”).14.化簡分式:=_____.15.小天家、小亮家、學校依次在同一條筆直的公路旁(各自到公路的距離忽略不計),每天早上7點整小天都會從家出發(fā)以每分鐘60米的速度走到距他家600米的小亮家,然后兩人以小天同樣的速度準時在7:30到校早讀.某日早上7點過,小亮在家等小天的時候突然想起今天輪到自己值日掃地了,所以就以每分鐘60米的速度先向?qū)W校走去,后面打算再和小天解釋,小天來到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考時間忽略不計),于是他就以每分鐘100米的速度去追小亮,兩人之間的距離y(米)及小亮出發(fā)的時間x(分)之間的函數(shù)關系如下圖所示.請問當小天追上小亮時離學校還有_____米.16.如圖,在中,,,,將折疊,使點與點重合,得到折痕,則的周長為_____.17.菱形的邊長為,,則以為邊的正方形的面積為__________.18.如圖,在矩形中,,對角線,相交于點,垂直平分于點,則的長為__________.三、解答題(共66分)19.(10分)某單位招聘員工,采取筆試與面試相結(jié)合的方式進行,兩項成績的原始分均為100分.前6名選手的得分如下:根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折和成綜合成績(綜合成績的滿分仍為100分)(1)這6名選手筆試成績的中位數(shù)是分,眾數(shù)是分.(2)現(xiàn)得知1號選手的綜合成績?yōu)?8分,求筆試成績和面試成績各占的百分比.(3)求出其余五名選手的綜合成績,并以綜合成績排序確定前兩名人選.20.(6分)健身運動已成為時尚,某公司計劃組裝A、B兩種型號的健身器材共40套,捐給社區(qū)健身中心.組裝一套A型健身器材需甲種部件7個和乙種部件4個,組裝一套B型健身器材需甲種部件3個和乙種部件6個.公司現(xiàn)有甲種部件240個,乙種部件196個.(1)公司在組裝A、B兩種型號的健身器材時,共有多少種組裝方案?(2)組裝一套A型健身器材需費用20元,組裝一套B型健身器材需費用18元,求總組裝費用最少的組裝方案,最少總組裝費用是多少?21.(6分)不解方程組,求的值22.(8分)(閱讀材料)解方程:.解:設,則原方程變?yōu)?解得,,.當時,,解得.當時,,解得.所以,原方程的解為,,,.(問題解決)利用上述方法,解方程:.23.(8分)在矩形中ABCD,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對位點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F(1)如圖1,若點E是AD的中點,求證:△AEB≌△DEC;(2)如圖2,①求證:BP=BF;②當AD=25,且AE<DE時,求的值.24.(8分)小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關系如圖1所示,櫻桃價格z(單位:元/千克)與上市時間x(單位:天)的函數(shù)關系式如圖2所示.(1)觀察圖象,直接寫出日銷售量的最大值;(2)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;(3)試比較第10天與第12天的銷售金額哪天多?25.(10分)在2019年春季環(huán)境整治活動中,某社區(qū)計劃對面積為的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用5天.(1)求甲、乙兩工程隊每天能完成綠化的面積;(2)設甲工程隊施工天,乙工程隊施工天,剛好完成綠化任務,求關于的函數(shù)關系式;(3)在(2)的條件下,若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過25天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.26.(10分)如圖,四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是邊AD上兩動點,且AE=DF,BE與對角線AC交于點G,聯(lián)結(jié)DG,DG交CF于點H.(1)求證:∠ADG=∠DCF;(2)聯(lián)結(jié)HO,試證明HO平分∠CHG.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

先作點M關于AC的對稱點M′,連接M′N交AC于P,此時MP+NP有最小值.然后證明四邊形ABNM′為平行四邊形,即可求出MP+NP=M′N=AB=1.【詳解】解:如圖,作點M關于AC的對稱點M′,連接M′N交AC于P,此時MP+NP有最小值,最小值為M′N的長.

∵菱形ABCD關于AC對稱,M是AB邊上的中點,

∴M′是AD的中點,

又∵N是BC邊上的中點,

∴AM′∥BN,AM′=BN,

∴四邊形ABNM′是平行四邊形,

∴M′N=AB=1,

∴MP+NP=M′N=1,即MP+NP的最小值為1,

故選:B.【點睛】本題考查的是軸對稱-最短路線問題及菱形的性質(zhì),熟知兩點之間線段最短的知識是解答此題的關鍵.2、B【解析】

可設截得的2米長的鋼管x根,截得的1米長的鋼管y根,根據(jù)題意得,于是問題轉(zhuǎn)化為求二元一次方程的整數(shù)解的問題,再進行討論即可.【詳解】解:設截得的2米長的鋼管x根,截得的1米長的鋼管y根,根據(jù)題意得,因為x、y都是正整數(shù),所以當x=1時,y=5;當x=2時,y=3;當x=3時,y=1;綜上共3種方法,故選B.【點睛】本題考查了二元一次方程的應用和二元一次方程的整數(shù)解,正確列出方程并逐一討論求解是解題的關鍵.3、C【解析】

根據(jù)直角三角形的性質(zhì)求出斜邊長,根據(jù)勾股定理、完全平方公式計算即可.【詳解】設直角三角形的兩條直角邊分別為x、y,

斜邊上的中線為d,

斜邊長為2d,

由勾股定理得,,

直角三角形的面積為S,

,

則,

則,,

這個三角形周長為:,

故選C.

【點睛】本題考查了勾股定理的應用,解題的關鍵是根據(jù)直角三角形的兩條直角邊長分別是a,b,斜邊長為c,得出.4、A【解析】

去括號、移項,合并同類項,系數(shù)化成1即可.【詳解】3(x-2)≥x+43x-6≥x+42x≥10∴x≥5故選A.【點睛】本題考查了解一元一次不等式.注意:解一元一次不等式的步驟是:去分母、去括號、移項、合并同類項、系數(shù)化成1.5、B【解析】

由于點B與D關于AC對稱,所以連接BE,與AC的交點即為P點.此時PD+PE=BE最小,而BE是等邊△ABE的邊,BE=AB,由正方形ABCD的面積為16,可求出AB的長,從而得出結(jié)果.【詳解】解:設BE與AC交于點P',連接BD.∵點B與D關于AC對稱,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最?。哒叫蜛BCD的面積為16,∴AB=1,又∵△ABE是等邊三角形,∴BE=AB=1.故選:B.【點睛】本題考查的是正方形的性質(zhì)和軸對稱-最短路線問題,熟知“兩點之間,線段最短”是解答此題的關鍵.6、C【解析】試題分析:首先把﹣9移到方程右邊,再兩邊直接開平方即可.解:移項得;x2=9,兩邊直接開平方得:x=±3,故選C.考點:解一元二次方程-直接開平方法.7、C【解析】

由菱形ABCD的周長是24米,∠BAC=30°,易求得AB=6米,△ABD是等邊三角形,繼而求得答案.【詳解】解:∵菱形ABCD的周長是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等邊三角形,∴BD=AB=6米.故選C.【點睛】此題考查了菱形的性質(zhì)以及等邊三角形的判定與性質(zhì).注意證得△ABD是等邊三角形是解此題的關鍵.8、A【解析】

根據(jù)向左平移橫坐標減,向下平移縱坐標減進行解答即可.【詳解】解:將點先向左平移個單位長度得,再向下平移個單位長度得.故選A.【點睛】本題主要考查點坐標的平移規(guī)律:左減右加縱不變,上加下減橫不變.9、C【解析】

把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選:C.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.10、C【解析】

直接提取公因式將原式分解因式,進而將已知數(shù)值代入求出答案.【詳解】,,.故選:.【點睛】此題主要考查了提取公因式法分解因式,正確分解因式是解題關鍵.二、填空題(每小題3分,共24分)11、平行四邊形的對角線互相平分【解析】

題設:四邊形的對角線互相平分,結(jié)論:四邊形是平行四邊形.把題設和結(jié)論互換即得其逆命題.【詳解】逆命題是:平行四邊形的對角線互相平分.故答案為:平行四邊形的對角線互相平分.【點睛】命題的逆命題是把原命題的題設和結(jié)論互換.原命題正確但逆命題不一定正確,所以并不是所有的定理都有逆定理.12、1【解析】

利用二次根式的計算法則正確計算即可.【詳解】解:===1故答案為:1.【點睛】本題考查的是二次根式的混合運算,掌握計算法則是解題關鍵.13、<【解析】

方差用來計算每一個變量(觀察值)與總體均數(shù)之間的差異,所以從圖像看苗高的波動幅度,可以大致估計甲、乙兩塊地苗高數(shù)據(jù)的方差.【詳解】解:由圖可知,甲、乙兩塊地的苗高皆在12cm上下波動,但乙的波動幅度比甲大,∴則故答案為:<【點睛】本題考查了方差,方差反映了數(shù)據(jù)的波動程度,方差越大,數(shù)據(jù)的波動越大,正確理解方差的含義是解題的關鍵.14、-【解析】

將分子變形為﹣(x﹣y),再約去分子、分母的公因式x﹣y即可得到結(jié)論.【詳解】==﹣.故答案為﹣.【點睛】本題主要考查分式的約分,由約分的概念可知,要首先將分子、分母轉(zhuǎn)化為乘積的形式,再找出分子、分母的最大公因式并約去,注意不要忽視數(shù)字系數(shù)的約分.15、1【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得當小天追上小亮時離學校還有多少千米,本題得以解決.【詳解】解:設小天從到小亮家到追上小亮用的時間為a分鐘,由題意可得,400+60a=100a,解得,a=10,即小天從到小亮家到追上小亮用的時間為10分鐘,∵小天7:00從家出發(fā),到學校7:30,∴小天從家到學校用的時間為:30分鐘,∴當小天追上小亮時離學校還有:60×30﹣600﹣100×10=1(米),故答案為1.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.16、【解析】

首先利用勾股定理求得BC的長,然后根據(jù)折疊的性質(zhì)可以得到AE=EC,則△ABE的周長=AB+BC,即可求解.【詳解】解:在直角△ABC中,BC==8cm,

∵將折疊,使點與點重合,∵AE=EC,

∴△ABE的周長=AB+BE+AE=AB+BE+EC=AB+BC=6+8=14(cm).

故答案是:14cm.【點睛】本題考查了軸對稱(折疊)的性質(zhì)以及勾股定理,正確理解折疊中相等的線段是關鍵.17、【解析】

如圖,連接AC交BD于點O,得出△ABC是等邊三角形,利用菱形的性質(zhì)和勾股定理求得BO,得出BD,即可利用正方形的面積解決問題.【詳解】解:如圖,

連接AC交BD于點O,

∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,

∴△ABC是等邊三角形∠ABO=30°,AO=2,

∴BO==2,∴BD=2OB=4,

∴正方形BDEF的面積為1.

故答案為1.【點睛】本題考查菱形的性質(zhì),正方形的性質(zhì),勾股定理,等邊三角形的判定與性質(zhì),注意特殊角的運用是解決問題的關鍵.18、【解析】

結(jié)合題意,由矩形的性質(zhì)和線段垂直平分線的性質(zhì)可得AB=AO=OB=OD=4,根據(jù)勾股定理可求AD的長.【詳解】∵四邊形ABCD是矩形,

∴AO=BO=CO=DO,

∵AE垂直平分OB于點E,

∴AO=AB=4,

∴AO=OB=AB=4,

∴BD=8,

在Rt△ABD中,AD==.

故答案為:.【點睛】本題考查矩形的性質(zhì)和線段垂直平分線的性質(zhì),解題的關鍵是掌握矩形的性質(zhì)和線段垂直平分線的性質(zhì).三、解答題(共66分)19、(1)84.5,84;(2)筆試成績和面試成績各占的百分比是40%,60%;(3)2號選手的綜合成績是89.6(分),3號選手的綜合成績是85.2(分),4號選手的綜合成績是90(分),5號選手的綜合成績是81.6(分),6號選手的綜合成績是83(分),綜合成績排序前兩名人選是4號和2號.【解析】

(1)根據(jù)中位數(shù)和眾數(shù)的定義即把這組數(shù)據(jù)從小到大排列,再找出最中間兩個數(shù)的平均數(shù)就是中位數(shù),再找出出現(xiàn)的次數(shù)最多的數(shù)即是眾數(shù);(2)先設筆試成績和面試成績各占的百分百是x,y,根據(jù)題意列出方程組,求出x,y的值即可;(3)根據(jù)筆試成績和面試成績各占的百分比,分別求出其余五名選手的綜合成績,即可得出答案.【詳解】(1)把這組數(shù)據(jù)從小到大排列為,80,84,84,85,90,92,最中間兩個數(shù)的平均數(shù)是(84+85)÷2=84.5(分),則這6名選手筆試成績的中位數(shù)是84.5,84出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則這6名選手筆試成績的眾數(shù)是84;故答案為:84.5,84;(2)設筆試成績和面試成績各占的百分百是x,y,根據(jù)題意得:,解得:,故筆試成績和面試成績各占的百分比是40%,60%;(3)2號選手的綜合成績是92×0.4+88×0.6=89.6(分),3號選手的綜合成績是84×0.4+86×0.6=85.2(分),4號選手的綜合成績是90×0.4+90×0.6=90(分),5號選手的綜合成績是84×0.4+80×0.6=81.6(分),6號選手的綜合成績是80×0.4+85×0.6=83(分),則綜合成績排序前兩名人選是4號和2號【點睛】此題考查了加權平均數(shù),用到的知識點是中位數(shù)、眾數(shù)、加權平均數(shù)的計算公式,關鍵靈活運用有關知識列出算式.20、(1)組裝A、B兩種型號的健身器材共有9種組裝方案;(2)總組裝費用最少的組裝方案:組裝A型器材22套,組裝B型器材18套【解析】

(1)設公司組裝A型器材x套,則組裝B型器材(40-x)套,依題意得,解不等式組可得;(2)總的組裝費用:y=20x+18(40-x)=2x+720,可分析出最值.【詳解】(1)設公司組裝A型器材x套,則組裝B型器材(40-x)套,依題意得,解得:22≤x≤30,由于x為整數(shù),∴x取22,23,24,25,26,27,28,29,30,∴組裝A、B兩種型號的健身器材共有9種組裝方案;(2)總的組裝費用:y=20x+18(40-x)=2x+720,∵k=2>0,∴y隨x的增大而增大,∴當x=22時,總的組裝費用最少,最少組裝費用是2×22+720=764元,總組裝費用最少的組裝方案:組裝A型器材22套,組裝B型器材18套.21、6.【解析】

應把所給式子進行因式分解,整理為與所給等式相關的式子,代入求值即可.【詳解】原式=∴原式=【點睛】本題既考查了對因式分解方法的掌握,又考查了代數(shù)式求值的方法,同時還隱含了整體的數(shù)學思想和正確運算的能力.22、,,,【解析】

先變形,再仿照閱讀材料換元,求出m的值,再代入求出x即可.【詳解】解:原方程變?yōu)?設,則原方程變?yōu)?解得,,.當時,,解得當時,,解得或3.所以,原方程的解為,,,.【點睛】本題考查解一元二次方程和解高次方程,能夠正確換元是解此題的關鍵.23、(1)見解析;(2)①見解析;②【解析】

(1)先判斷出,再判斷出,即可得出結(jié)論;(2)①利用折疊的性質(zhì),得出,,進而判斷出即可得出結(jié)論;②判斷出,得出比例式建立方程求解即可得出,,再判斷出,進而求出,即可得出結(jié)論;【詳解】解:(1)在矩形中,,∵是中點∴=在和中,∴(2)①在矩形,∵沿折疊得到∴,∵∴∴∴∴②當時∵∴∵∴∵∴∴設∴∴∴或∵∴,∴,由折疊得,∴∵∴∴設∴∴∴在中,∴【點睛】本題考查了全等三角形的判定與性質(zhì)、矩形的性質(zhì)、翻折變換以及相似三角形的判定與性質(zhì),綜合性較強,結(jié)合圖形認真理解題意從而正確解題.24、解:(1)日銷售量的最大值為120千克.(2)(3)第10天的銷售金額多.【解析】試題分析:(1)觀察圖象,即可求得日銷售量的最大值;(2)分別從0≤x≤12時與12<x≤20去分析,利用待定系數(shù)法即可求得小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;(3)第10天和第12天在第5天和第15天之間,當5<x≤15時,設櫻桃價格與上市時間的函數(shù)解析式為z=kx+b,由點(5,32),(15,12)在z=kx+b的圖象上,利用待定系數(shù)法即可求得櫻桃價格與上市時間的函數(shù)解析式,繼而求得10天與第12天的銷售金額.試題解析:(1)由圖象得:120千克,(2)當0≤x≤12時,設日銷售量與上市的時間的函數(shù)解析式為y=k1x,∵直線y=k1x過點(12,120),∴k1=10,∴函數(shù)解析式為y=10x,當12<x≤20,設日銷售量與上市時間的函數(shù)解析式為y=k2x+b,∵點(12,120),(20,0)在y=k2x+b的圖象上,∴,解得:∴函數(shù)解析式為y=-15x+300,∴小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式為:;(3)∵第10天和第12天在第5天和第15天之間,∴當5<x≤15時,設櫻桃價格與上市時間的函數(shù)解析式為z=mx+n,∵點(5,32),(15,12)在z=mx+n的圖象上,∴,解得:,∴函數(shù)解析式為z=-2x+42,當x=10時,y=10×10=100,z=-2×10+42=22,銷售金額為:100×22=2200(元),當x=12時,y=120,z=-2×12+42=18,銷售金額為:120×18=2160(元),∵2200>2160,∴第10天的銷售金額多.考點:一次函數(shù)的應用.25、(1)甲、乙兩工程隊每天能完成綠化面積分別為和;(2);(3)甲工程隊施工15天,乙工程隊施工10天,則施工總費用最低,最低

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論