版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣西武鳴高中高考考前提分數學仿真卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.2.己知,,,則()A. B. C. D.3.已知集合,,若,則()A.4 B.-4 C.8 D.-84.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則5.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.6.設等比數列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.數學中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④8.若函數在時取得最小值,則()A. B. C. D.9.正項等比數列中的、是函數的極值點,則()A. B.1 C. D.210.已知,,,則的最小值為()A. B. C. D.11.已知為虛數單位,若復數滿足,則()A. B. C. D.12.設過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足:點在直線上,若使、、構成等比數列,則______14.設是定義在上的函數,且,對任意,若經過點的一次函數與軸的交點為,且互不相等,則稱為關于函數的平均數,記為.當_________時,為的幾何平均數.(只需寫出一個符合要求的函數即可)15.在《九章算術》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,內切球半徑為,則__________.16.曲線在點處的切線方程為__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,底面是等邊三角形,側面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.18.(12分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護人員和醫(yī)療、生活物資嚴重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫(yī)用防護服2.6萬套N95口軍47.9萬個,醫(yī)用一次性口罩172.87萬個,護目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數:A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?19.(12分)在綜合素質評價的某個維度的測評中,依據評分細則,學生之間相互打分,最終將所有的數據合成一個分數,滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學生的在該維度的測評結果,在畢業(yè)班中隨機抽出一個班的數據.該班共有60名學生,得到如下的列聯(lián)表:優(yōu)秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?(3)現(xiàn)在如果想了解全校學生在該維度的表現(xiàn)情況,采取簡單隨機抽樣方式在全校學生中抽取少數一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02420.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.21.(12分)已知函數,其中e為自然對數的底數.(1)討論函數的單調性;(2)用表示中較大者,記函數.若函數在上恰有2個零點,求實數a的取值范圍.22.(10分)已知函數,它的導函數為.(1)當時,求的零點;(2)當時,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先解不等式,可得出,求出函數的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數的值域.當時,,則,此時;當時,,此時.綜上所述,函數的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數不等式恒成立求參數,同時也考查了分段函數基本性質的應用,考查分類討論思想的應用,屬于中等題.2、B【解析】
先將三個數通過指數,對數運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數、對數的大小比較,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.3、B【解析】
根據交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.4、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.5、D【解析】
根據三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.6、C【解析】
根據等比數列的前項和公式,判斷出正確選項.【詳解】由于數列是等比數列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數列前項和公式,屬于基礎題.7、C【解析】
①利用之間的代換判斷出對稱軸的條數;②利用基本不等式求解出到原點的距離最大值;③將面積轉化為的關系式,然后根據基本不等式求解出最大值;④根據滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;當變?yōu)闀r,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.8、D【解析】
利用輔助角公式化簡的解析式,再根據正弦函數的最值,求得在函數取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數的最值的應用,屬于基礎題.9、B【解析】
根據可導函數在極值點處的導數值為,得出,再由等比數列的性質可得.【詳解】解:依題意、是函數的極值點,也就是的兩個根∴又是正項等比數列,所以∴.故選:B【點睛】本題主要考查了等比數列下標和性質以應用,屬于中檔題.10、B【解析】,選B11、A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.12、C【解析】
畫出圖形,將三角形面積比轉為線段長度比,進而轉為坐標的表達式。寫出直線方程,再聯(lián)立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設與的夾角為,則中邊上的高與中邊上的高之比為,,設,則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點睛】解決本題主要在于將面積比轉化為線段長的比例關系,進而聯(lián)立方程組求解,是一道不錯的綜合題.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】
根據點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數列,,即,解得:.故答案為:.【點睛】本題考查根據三項成等比數列求解參數值的問題,涉及到等比中項的應用,屬于基礎題.14、【解析】
由定義可知三點共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據題意,由定義可知:三點共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點睛】本題考查了兩點的斜率公式,考查了推理能力,考查了運算能力.本題關鍵是分析出三點共線.15、【解析】
該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內切球在側面內的正視圖是的內切圓,從而內切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側棱底面,且底面為正方形,內切球在側面內的正視圖是的內切圓,內切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內切球的相關問題,補形法的運用,以及數學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當的角度做出截面.球心位置的確定的方法有很多,主要有兩種:(1)補形法(構造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.16、【解析】
對函數求導后,代入切點的橫坐標得到切線斜率,然后根據直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點睛】本題主要考查過曲線上一點的切線方程的求法,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)連結BM,推導出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導出△ABA1是等腰直角三角形,設AB,則AA1=2a,BM=AM=a,推導出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結,因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結,,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設,則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.18、每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低【解析】
設每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標函數取最小值的整數解,即可得解.【詳解】設每天派出A型卡車輛,則派出B型卡車輛,運輸隊所花成本為元,由題意可知,,整理得,目標函數,如圖所示,為不等式組表示的可行域,由圖可知,當直線經過點時,最小,解方程組,解得,,然而,故點不是最優(yōu)解.因此在可行域的整點中,點使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低.【點睛】本題考查了線性規(guī)劃問題中的最優(yōu)整數解問題,考查了數形結合的思想,解題關鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數,同時注意整點的選取,屬于中檔題.19、(1)見解析;(2)在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”(3)見解析.【解析】
(1)由已知抽取的人中優(yōu)秀人數為20,這樣結合已知可得列聯(lián)表;(2)根據列聯(lián)表計算,比較后可得;(3)由于性別對結果有影響,因此用分層抽樣法.【詳解】解:(1)優(yōu)秀合格總計男生62228女生141832合計204060(2)由于,因此在犯錯誤的概率不超過0.10的前提下認為“性別與測評結果有關系”.(3)由(2)可知性別有可能對是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學生,這樣得到的結果對學生在該維度的總體表現(xiàn)情況會比較符合實際情況.【點睛】本題考查獨立性檢驗,考查分層抽樣的性質.考查學生的數據處理能力.屬于中檔題.20、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內,所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,則,,,,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,,所以.又因為,所以,,設平面的法向量為,則,即,,可得,即因為在平面內,所以,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2175-2024水溶性酸測定儀校準規(guī)范
- 速寫交通課件教學課件
- 2024年度金融服務技術外包合同
- 認識雪 課件教學課件
- 2024年度建筑項目工程終止合同
- 2024年度太陽能系統(tǒng)安裝合同
- 2024年度企業(yè)咨詢服務外包合同
- 2024年修訂版:農產品冷鏈物流配送協(xié)議
- 2024年建筑合同糾紛解決策略
- 2024小區(qū)智能化系統(tǒng)工程施工合同協(xié)議書范本
- 四肢關節(jié)病癥推拿治療-梨狀肌綜合癥患者的推拿治療
- 房產開發(fā)地塊收購項目可行性研究報告(完美版)
- JJF 2133-2024海洋資料浮標傳感器校準規(guī)范
- HGT 6333-2024《煤氣化灰水阻垢分散劑阻垢性能測定方法》
- 高三一?!叭松枰獙W會繞行”審題立意及范文(彩色高效版)
- 2023-2024學年江蘇省南京玄武區(qū)中考語文最后一模試卷含解析
- 職場心理學智慧樹知到期末考試答案章節(jié)答案2024年山東工商學院
- 2024中國通信服務股份限公司招聘公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 中醫(yī)養(yǎng)生活動策劃方案
- 汽車坡道玻璃雨棚施工方案
- 漫畫解讀非煤地采礦山重大事故隱患判定標準
評論
0/150
提交評論