版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆上海市崇明區(qū)市級名校中考數(shù)學(xué)五模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.拋物線的頂點(diǎn)坐標(biāo)是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)2.我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長一托.折回索子卻量竿,卻比竿子短一托“其大意為:現(xiàn)有一根竿和一條繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.設(shè)繩索長x尺,竿長y尺,則符合題意的方程組是()A. B. C. D.3.已知x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,下列結(jié)論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<04.如圖所示,在方格紙上建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)O按順時針方向旋轉(zhuǎn)90°,得到△A′B′O,則點(diǎn)A′的坐標(biāo)為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)5.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,46.下列各數(shù)中,最小的數(shù)是()A.﹣4B.3C.0D.﹣27.實(shí)數(shù)a,b,c在數(shù)軸上對應(yīng)點(diǎn)的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c8.如圖所示的幾何體的左視圖是()A. B. C. D.9.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.12510.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π11.已知a﹣b=1,則a3﹣a2b+b2﹣2ab的值為()A.﹣2 B.﹣1 C.1 D.212.下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算的結(jié)果為.14.若方程x2﹣4x+1=0的兩根是x1,x2,則x1(1+x2)+x2的值為_____.15.如圖,是用三角形擺成的圖案,擺第一層圖需要1個三角形,擺第二層圖需要3個三角形,擺第三層圖需要7個三角形,擺第四層圖需要13個三角形,擺第五層圖需要21個三角形,…,擺第n層圖需要_____個三角形.16.觀察下列等式:第1個等式:a1=;第2個等式:a2=;第3個等式:a3=;…請按以上規(guī)律解答下列問題:(1)列出第5個等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值為_____.17.若代數(shù)式在實(shí)數(shù)范圍內(nèi)有意義,則實(shí)數(shù)x的取值范圍為_____.18.若一個多邊形的內(nèi)角和是900o,則這個多邊形是邊形.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).20.(6分)如圖,在矩形ABCD中,AB=4,BC=6,M是BC的中點(diǎn),DE⊥AM于點(diǎn)E.求證:△ADE∽△MAB;求DE的長.21.(6分)小強(qiáng)的媽媽想在自家的院子里用竹籬笆圍一個面積為4平方米的矩形小花園,媽媽問九年級的小強(qiáng)至少需要幾米長的竹籬笆(不考慮接縫).小強(qiáng)根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)做了如下的探究.下面是小強(qiáng)的探究過程,請補(bǔ)充完整:建立函數(shù)模型:設(shè)矩形小花園的一邊長為x米,籬笆長為y米.則y關(guān)于x的函數(shù)表達(dá)式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):根據(jù)函數(shù)的表達(dá)式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點(diǎn)、畫函數(shù)圖象:如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫出該函數(shù)的圖象;觀察分析、得出結(jié)論:根據(jù)以上信息可得,當(dāng)x=________時,y有最小值.由此,小強(qiáng)確定籬笆長至少為________米.22.(8分)已知正方形ABCD的邊長為2,作正方形AEFG(A,E,F(xiàn),G四個頂點(diǎn)按逆時針方向排列),連接BE、GD,(1)如圖①,當(dāng)點(diǎn)E在正方形ABCD外時,線段BE與線段DG有何關(guān)系?直接寫出結(jié)論;(2)如圖②,當(dāng)點(diǎn)E在線段BD的延長線上,射線BA與線段DG交于點(diǎn)M,且DG=2DM時,求邊AG的長;(3)如圖③,當(dāng)點(diǎn)E在正方形ABCD的邊CD所在的直線上,直線AB與直線DG交于點(diǎn)M,且DG=4DM時,直接寫出邊AG的長.23.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點(diǎn)M在對稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請問是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.24.(10分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點(diǎn)O,點(diǎn)E在AO上,且OE=OC.求證:∠1=∠2;連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.25.(10分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.26.(12分)已知,拋物線y=ax2+c過點(diǎn)(-2,2)和點(diǎn)(4,5),點(diǎn)F(0,2)是y軸上的定點(diǎn),點(diǎn)B是拋物線上除頂點(diǎn)外的任意一點(diǎn),直線l:y=kx+b經(jīng)過點(diǎn)B、F且交x軸于點(diǎn)A.(1)求拋物線的解析式;(2)①如圖1,過點(diǎn)B作BC⊥x軸于點(diǎn)C,連接FC,求證:FC平分∠BFO;②當(dāng)k=時,點(diǎn)F是線段AB的中點(diǎn);(3)如圖2,M(3,6)是拋物線內(nèi)部一點(diǎn),在拋物線上是否存在點(diǎn)B,使△MBF的周長最小?若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.27.(12分)如圖,以AB邊為直徑的⊙O經(jīng)過點(diǎn)P,C是⊙O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且∠ACP=60°,PA=PD.試判斷PD與⊙O的位置關(guān)系,并說明理由;若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CE?CP的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
已知解析式為頂點(diǎn)式,可直接根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn),求頂點(diǎn)坐標(biāo).【詳解】解:y=(x-2)2+3是拋物線的頂點(diǎn)式方程,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,頂點(diǎn)坐標(biāo)為(2,3).故選A.【點(diǎn)睛】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:頂點(diǎn)式y(tǒng)=a(x-h)2+k,頂點(diǎn)坐標(biāo)是(h,k),對稱軸是x=h.2、A【解析】
設(shè)索長為x尺,竿子長為y尺,根據(jù)“索比竿子長一托,折回索子卻量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組.【詳解】設(shè)索長為x尺,竿子長為y尺,根據(jù)題意得:.故選A.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.3、A【解析】分析:A、根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△>0,由此即可得出x1≠x2,結(jié)論A正確;B、根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=a,結(jié)合a的值不確定,可得出B結(jié)論不一定正確;C、根據(jù)根與系數(shù)的關(guān)系可得出x1?x2=﹣2,結(jié)論C錯誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結(jié)論D錯誤.綜上即可得出結(jié)論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結(jié)論A正確;B、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結(jié)論不一定正確;C、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結(jié)論C錯誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結(jié)論D錯誤.故選A.點(diǎn)睛:本題考查了根的判別式以及根與系數(shù)的關(guān)系,牢記“當(dāng)△>0時,方程有兩個不相等的實(shí)數(shù)根”是解題的關(guān)鍵.4、D【解析】
解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【詳解】由圖知A點(diǎn)的坐標(biāo)為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點(diǎn)坐標(biāo)為(1,3).故選D.5、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.6、A【解析】
有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而小,據(jù)此判斷即可【詳解】根據(jù)有理數(shù)比較大小的方法,可得﹣4<﹣2<0<3∴各數(shù)中,最小的數(shù)是﹣4故選:A【點(diǎn)睛】本題考查了有理數(shù)大小比較的方法,解題的關(guān)鍵要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而小7、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項(xiàng)判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項(xiàng)A不符合題意;∵c<b<0,∴b+c<0,∴選項(xiàng)B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項(xiàng)C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項(xiàng)D符合題意.故選D.點(diǎn)睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù).8、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.9、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點(diǎn)睛】本題考查角平分線的定義(從一個角的頂點(diǎn)引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.10、D【解析】
利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.【點(diǎn)睛】此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關(guān)鍵.11、C【解析】
先將前兩項(xiàng)提公因式,然后把a(bǔ)﹣b=1代入,化簡后再與后兩項(xiàng)結(jié)合進(jìn)行分解因式,最后再代入計算.【詳解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故選C.【點(diǎn)睛】本題考查了因式分解的應(yīng)用,四項(xiàng)不能整體分解,關(guān)鍵是利用所給式子的值,將前兩項(xiàng)先分解化簡后,再與后兩項(xiàng)結(jié)合.12、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;
B、不是軸對稱圖形,是中心對稱圖形,不符合題意;
C、不是軸對稱圖形,是中心對稱圖形,不符合題意;
D、是軸對稱圖形,符合題意.
故選D.【點(diǎn)睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
直接把分子相加減即可.【詳解】=,故答案為:.【點(diǎn)睛】本題考查了分式的加減法,關(guān)鍵是要注意通分及約分的靈活應(yīng)用.14、5【解析】由題意得,,.∴原式15、n2﹣n+1【解析】
觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為3,比第1層多2個;第3層三角形的個數(shù)為7,比第2層多4個;…可得,每一層比上一層多的個數(shù)依次為2,4,6,…據(jù)此作答.【詳解】觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為22?2+1=3,第3層三角形的個數(shù)為32?3+1=7,第四層圖需要42?4+1=13個三角形擺第五層圖需要52?5+1=21.那么擺第n層圖需要n2?n+1個三角形。故答案為:n2?n+1.【點(diǎn)睛】本題考查了規(guī)律型:圖形的變化類,解題的關(guān)鍵是由圖形得到一般規(guī)律.16、49【解析】
(1)觀察等式可得然后根據(jù)此規(guī)律就可解決問題;
(2)只需運(yùn)用以上規(guī)律,采用拆項(xiàng)相消法即可解決問題.【詳解】(1)觀察等式,可得以下規(guī)律:,∴(2)解得:n=49.故答案為:49.【點(diǎn)睛】屬于規(guī)律型:數(shù)字的變化類,觀察題目,找出題目中數(shù)字的變化規(guī)律是解題的關(guān)鍵.17、x≤1【解析】
根據(jù)二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點(diǎn)睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是利用被開方數(shù)是非負(fù)數(shù)解答即可.18、七【解析】
根據(jù)多邊形的內(nèi)角和公式,列式求解即可.【詳解】設(shè)這個多邊形是邊形,根據(jù)題意得,,解得.故答案為.【點(diǎn)睛】本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點(diǎn):解直角三角形的應(yīng)用-方向角問題.20、(1)證明見解析;(2).【解析】試題分析:利用矩形角相等的性質(zhì)證明△DAE∽△AMB.試題解析:(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M(jìn)是邊BC的中點(diǎn),BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.21、見解析【解析】
根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x,由x═()2+4可得當(dāng)x=2,y有最小值,則可求籬笆長.【詳解】根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x∵x()2+()2=()2+4,∴x4,∴2x1,∴當(dāng)x=2時,y有最小值為1,由此小強(qiáng)確定籬笆長至少為1米.故答案為:y=2x,2,1.【點(diǎn)睛】本題考查了反比例函數(shù)的應(yīng)用,完全平方公式的運(yùn)用,關(guān)鍵是熟練運(yùn)用完全平方公式.22、(1)結(jié)論:BE=DG,BE⊥DG.理由見解析;(1)AG=1;(3)滿足條件的AG的長為1或1.【解析】
(1)結(jié)論:BE=DG,BE⊥DG.只要證明△BAE≌△DAG(SAS),即可解決問題;(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.由A,D,E,G四點(diǎn)共圓,推出∠ADO=∠AEG=45°,解直角三角形即可解決問題;(3)分兩種情形分別畫出圖形即可解決問題;【詳解】(1)結(jié)論:BE=DG,BE⊥DG.理由:如圖①中,設(shè)BE交DG于點(diǎn)K,AE交DG于點(diǎn)O.∵四邊形ABCD,四邊形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四點(diǎn)共圓,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴∵DG=1DM,∴∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=1,在Rt△AHG中,(3)①如圖③中,當(dāng)點(diǎn)E在CD的延長線上時.作GH⊥DA交DA的延長線于H.易證△AHG≌△EDA,可得GH=AB=1,∵DG=4DM.AM∥GH,∴∴DH=8,∴AH=DH﹣AD=6,在Rt△AHG中,②如圖3﹣1中,當(dāng)點(diǎn)E在DC的延長線上時,易證:△AKE≌△GHA,可得AH=EK=BC=1.∵AD∥GH,∴∵AD=1,∴HG=10,在Rt△AGH中,綜上所述,滿足條件的AG的長為或.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),平行線分線段成比例定理,等腰直角三角形的性質(zhì)和判定,勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.23、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解析】
(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長,再利用勾股定理的逆定理可進(jìn)行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點(diǎn)的坐標(biāo),當(dāng)AF為邊時,則有FM∥AN且FM=AN,則可求得M點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得M點(diǎn)坐標(biāo);當(dāng)AF為對角線時,由A、F的坐標(biāo)可求得平行四邊形的對稱中心,可設(shè)出M點(diǎn)坐標(biāo),則可表示出N點(diǎn)坐標(biāo),再由N點(diǎn)在x軸上可得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)坐標(biāo).【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點(diǎn),∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標(biāo)代入可得,解得,∴直線BE解析式為y=x+1,當(dāng)x=2時,y=2,∴F(2,2),①當(dāng)AF為平行四邊形的一邊時,則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點(diǎn)M的縱坐標(biāo)為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,﹣2);②當(dāng)AF為平行四邊形的對角線時,∵A(4,0),F(xiàn)(2,2),∴線段AF的中點(diǎn)為(3,1),即平行四邊形的對稱中心為(3,1),設(shè)M(t,﹣t2+3t),N(x,0),則﹣t2+3t=2,解得t=,∵點(diǎn)M在拋物線對稱軸右側(cè),∴x>2,∵t>2,∴t=,∴M點(diǎn)坐標(biāo)為(,2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(,2)或(,﹣2).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、勾股定理及其逆定理、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.在(1)中求得拋物線的頂點(diǎn)坐標(biāo)是解題的關(guān)鍵,注意拋物線頂點(diǎn)式的應(yīng)用,在(2)中求得△EDB各邊的長度是解題的關(guān)鍵,在(3)中確定出M點(diǎn)的縱坐標(biāo)是解題的關(guān)鍵,注意分類討論.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度較大.24、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【解析】
(1)證明△ADC≌△ABC后利用全等三角形的對應(yīng)角相等證得結(jié)論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.【點(diǎn)睛】考點(diǎn):1.全等三角形的判定和性質(zhì);2.線段垂直平分線的性質(zhì);3.菱形的判定.25、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】
(1)利用平行線的性質(zhì)及中點(diǎn)的定義,可利用AAS證得結(jié)論;
(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵AD為BC邊上的中線
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),
∴AD=DC=BC,
∴四邊形ADCF是菱形;
(3)連接DF,
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=5,
∵四邊形ADCF是菱形,
∴S菱形ADCF=AC?DF=×4×5=1.【點(diǎn)睛】本題主要考查菱形的性質(zhì)及判定,利用全等三角形的性質(zhì)證得AF=CD是解題的關(guān)鍵,注意菱形面積公式的應(yīng)用.26、(1);(2)①見解析;②;(3)存在點(diǎn)B,使△MBF的周長最?。鱉BF周長的最小值為11,直線l的解析式為.【解析】
(1)用待定系數(shù)法將已知兩點(diǎn)的坐標(biāo)代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點(diǎn)D,設(shè)B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點(diǎn)的坐標(biāo),運(yùn)用勾股定理表示出的長度,令,解關(guān)于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過“兩點(diǎn)之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點(diǎn)M作MN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B1,過點(diǎn)B作BE⊥x軸于點(diǎn)E,連接B1F,通過第(2)問的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年黑色防滑膠帶項(xiàng)目可行性研究報告
- 2024年火災(zāi)自動報警聯(lián)動系統(tǒng)項(xiàng)目可行性研究報告
- 2024年中國酒店輸車市場調(diào)查研究報告
- 靜安區(qū)勞務(wù)承包合同范本
- 訂購樹苗合同范本
- 購買舞蹈項(xiàng)目的合同范本
- 醫(yī)院器械外包合同范本
- 2025屆高考?xì)v史二輪復(fù)習(xí)第四模塊第10講大危機(jī)影響下的世界大調(diào)整-第一次世界大戰(zhàn)1929年-1933年經(jīng)濟(jì)大危機(jī)催生世界發(fā)展的新模式作業(yè)含解析
- 北京市對外經(jīng)貿(mào)大學(xué)附屬中學(xué)2025屆高三物理第一學(xué)期期末考試試題含解析
- 2025屆安徽省亳州市利辛縣闞疃金石中學(xué)物理高三第一學(xué)期期中教學(xué)質(zhì)量檢測試題含解析
- 《耳穴療法治療失眠》課件
- 詢盤分析及回復(fù)
- 氯化工藝安全培訓(xùn)課件
- 指導(dǎo)巡察工作精細(xì)科學(xué)
- 企業(yè)法律知識培訓(xùn)消費(fèi)者權(quán)益保護(hù)實(shí)務(wù)
- 快樂讀書吧-讀后分享課:《十萬個為什么》教學(xué)案列
- 2024年 貴州茅臺酒股份有限公司招聘筆試參考題庫含答案解析
- 河上建壩糾紛可行性方案
- 第五單元學(xué)雷鋒在行動(教案)全國通用五年級下冊綜合實(shí)踐活動
- 2024年華融實(shí)業(yè)投資管理有限公司招聘筆試參考題庫含答案解析
- 2024年1月普通高等學(xué)校招生全國統(tǒng)一考試適應(yīng)性測試(九省聯(lián)考)歷史試題(適用地區(qū):貴州)含解析
評論
0/150
提交評論