![2024屆上海市長(zhǎng)寧區(qū)西延安中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view3/M01/36/35/wKhkFmYbrSiAPppdAAHh2QGFxsc976.jpg)
![2024屆上海市長(zhǎng)寧區(qū)西延安中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view3/M01/36/35/wKhkFmYbrSiAPppdAAHh2QGFxsc9762.jpg)
![2024屆上海市長(zhǎng)寧區(qū)西延安中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view3/M01/36/35/wKhkFmYbrSiAPppdAAHh2QGFxsc9763.jpg)
![2024屆上海市長(zhǎng)寧區(qū)西延安中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view3/M01/36/35/wKhkFmYbrSiAPppdAAHh2QGFxsc9764.jpg)
![2024屆上海市長(zhǎng)寧區(qū)西延安中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view3/M01/36/35/wKhkFmYbrSiAPppdAAHh2QGFxsc9765.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆上海市長(zhǎng)寧區(qū)西延安中學(xué)中考考前最后一卷數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下表是某校合唱團(tuán)成員的年齡分布,對(duì)于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)2.下列計(jì)算結(jié)果為a6的是()A.a(chǎn)2?a3B.a(chǎn)12÷a2C.(a2)3D.(﹣a2)33.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.84.用鋁片做聽(tīng)裝飲料瓶,現(xiàn)有100張鋁片,每張鋁片可制瓶身16個(gè)或制瓶底45個(gè),一個(gè)瓶身和兩個(gè)瓶底可配成一套,設(shè)用張鋁片制作瓶身,則可列方程()A. B.C. D.5.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長(zhǎng)為A.6 B. C. D.36.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在7.若分式的值為0,則x的值為()A.-2 B.0 C.2 D.±28.如圖,PA和PB是⊙O的切線,點(diǎn)A和B是切點(diǎn),AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°9.點(diǎn)M(1,2)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)10.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.11.隨著“三農(nóng)”問(wèn)題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計(jì)圖.依據(jù)統(tǒng)計(jì)圖得出的以下四個(gè)結(jié)論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬(wàn)D.前年年收入不止①②③三種農(nóng)作物的收入12.如圖,圓O是等邊三角形內(nèi)切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,正方形OABC與正方形ODEF是位似圖形,點(diǎn)O為位似中心,位似比為2:3,點(diǎn)B、E在第一象限,若點(diǎn)A的坐標(biāo)為(1,0),則點(diǎn)E的坐標(biāo)是______.14.在?ABCD中,AB=3,BC=4,當(dāng)?ABCD的面積最大時(shí),下列結(jié)論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號(hào))15.某校準(zhǔn)備從甲、乙、丙、丁四個(gè)科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時(shí)成績(jī)的平均數(shù)(單位:分)及方差S2,如果要選出一個(gè)成績(jī)較好且狀態(tài)穩(wěn)定的組去參賽,那么應(yīng)選的組是_____.甲乙丙丁7887s211.20.91.816.如圖,小紅作出了邊長(zhǎng)為1的第1個(gè)正△A1B1C1,算出了正△A1B1C1的面積,然后分別取△A1B1C1三邊的中點(diǎn)A2,B2,C2,作出了第2個(gè)正△A2B2C2,算出了正△A2B2C2的面積,用同樣的方法,作出了第3個(gè)正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第8個(gè)正△A8B8C8的面積是_____.17.已知二次函數(shù)與一次函數(shù)的圖象相交于點(diǎn),如圖所示,則能使成立的x的取值范圍是______.18.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在第一象限,⊙P與x軸交于O,A兩點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),⊙P的半徑為,則點(diǎn)P的坐標(biāo)為_(kāi)______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點(diǎn)O為原點(diǎn),斜邊OA所在直線為x軸,建立平面直角坐標(biāo)系,以點(diǎn)P(4,0)為圓心,PA長(zhǎng)為半徑畫(huà)圓,⊙P與x軸的另一交點(diǎn)為N,點(diǎn)M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts,解答下列問(wèn)題:(發(fā)現(xiàn))(1)的長(zhǎng)度為多少;(2)當(dāng)t=2s時(shí),求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當(dāng)⊙P和△ABO的邊所在的直線相切時(shí),求點(diǎn)P的坐標(biāo).(拓展)當(dāng)與Rt△ABO的邊有兩個(gè)交點(diǎn)時(shí),請(qǐng)你直接寫(xiě)出t的取值范圍.20.(6分)如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=1.點(diǎn)D為y軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線DP的函數(shù)解析式;(2)如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(6分)(2017江蘇省常州市)為了解某校學(xué)生的課余興趣愛(ài)好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書(shū)法”和“其他”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛(ài)好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問(wèn)題:(1)本次抽樣調(diào)查中的樣本容量是;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛(ài)好為“打球”的學(xué)生人數(shù).22.(8分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點(diǎn),以AC為直徑的⊙O交AB于點(diǎn)E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.23.(8分)計(jì)算:.24.(10分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時(shí)秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過(guò)程中,當(dāng)秋千擺動(dòng)到最高點(diǎn)A時(shí),測(cè)得點(diǎn)A到BD的距離AC=2m,點(diǎn)A到地面的距離AE=1.8m;當(dāng)他從A處擺動(dòng)到A′處時(shí),有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.25.(10分)如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點(diǎn)D,過(guò)點(diǎn)D的直線交BC邊于點(diǎn)E,∠BDE=∠A.判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由.若⊙O的半徑R=5,tanA=,求線段CD的長(zhǎng).26.(12分)在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,﹣4),B(3,﹣2),C(6,﹣3).畫(huà)出△ABC關(guān)于軸對(duì)稱的△A1B1C1;以M點(diǎn)為位似中心,在網(wǎng)格中畫(huà)出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為2:1.27.(12分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點(diǎn).求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
由表易得x+(10-x)=10,所以總?cè)藬?shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學(xué)人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團(tuán)總?cè)藬?shù)為30人,∴合唱團(tuán)成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個(gè)統(tǒng)計(jì)量不會(huì)隨著x的變化而變化.故選D.2、C【解析】
分別根據(jù)同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運(yùn)算法則逐一計(jì)算可得.【詳解】A、a2?a3=a5,此選項(xiàng)不符合題意;
B、a12÷a2=a10,此選項(xiàng)不符合題意;
C、(a2)3=a6,此選項(xiàng)符合題意;
D、(-a2)3=-a6,此選項(xiàng)不符合題意;
故選C.【點(diǎn)睛】本題主要考查冪的運(yùn)算,解題的關(guān)鍵是掌握同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運(yùn)算法則.3、A【解析】
由于半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng),那么圓錐的底面周長(zhǎng)為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長(zhǎng)=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開(kāi)扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),解決本題的關(guān)鍵是應(yīng)用半圓的弧長(zhǎng)=圓錐的底面周長(zhǎng).4、C【解析】
設(shè)用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個(gè),瓶底個(gè),再根據(jù)一個(gè)瓶身和兩個(gè)瓶底可配成一套,即可列出方程.【詳解】設(shè)用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【點(diǎn)睛】此題主要考查一元一次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系.5、D【解析】
解:因?yàn)锳B是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【點(diǎn)睛】本題考查圓的基本性質(zhì);垂經(jīng)定理及解直角三角形,綜合性較強(qiáng),難度不大.6、B【解析】
根據(jù)最小的正整數(shù)是1解答即可.【詳解】最小的正整數(shù)是1.故選B.【點(diǎn)睛】本題考查了有理數(shù)的認(rèn)識(shí),關(guān)鍵是根據(jù)最小的正整數(shù)是1解答.7、C【解析】由題意可知:,解得:x=2,故選C.8、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點(diǎn):切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).9、A【解析】
關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征是縱坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù).【詳解】點(diǎn)M(1,2)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)為(-1,2)【點(diǎn)睛】本題考查關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)特征,牢記關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的性質(zhì)是解題的關(guān)鍵.10、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項(xiàng)A、C錯(cuò)誤,選項(xiàng)D正確,選項(xiàng)B錯(cuò)誤,故選D.11、C【解析】
A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項(xiàng)錯(cuò)誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項(xiàng)錯(cuò)誤;C、去年②的收入為80000×=28000=2.8(萬(wàn)元),此選項(xiàng)正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題主要考查扇形統(tǒng)計(jì)圖,解題的關(guān)鍵是掌握扇形統(tǒng)計(jì)圖是用整個(gè)圓表示總數(shù)用圓內(nèi)各個(gè)扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù),并且通過(guò)扇形統(tǒng)計(jì)圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.12、D【解析】
由三角形內(nèi)切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB),把對(duì)應(yīng)數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內(nèi)切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點(diǎn)睛】此題主要考查了三角形的內(nèi)切圓與內(nèi)心以及切線的性質(zhì).關(guān)鍵是要知道關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(,)【解析】
由題意可得OA:OD=2:3,又由點(diǎn)A的坐標(biāo)為(1,0),即可求得OD的長(zhǎng),又由正方形的性質(zhì),即可求得E點(diǎn)的坐標(biāo).【詳解】解:∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為2:3,∴OA:OD=2:3,∵點(diǎn)A的坐標(biāo)為(1,0),即OA=1,∴OD=,∵四邊形ODEF是正方形,∴DE=OD=.∴E點(diǎn)的坐標(biāo)為:(,).故答案為:(,).【點(diǎn)睛】此題考查了位似變換的性質(zhì)與正方形的性質(zhì),注意理解位似變換與相似比的定義是解此題的關(guān)鍵.14、①②④【解析】
由當(dāng)?ABCD的面積最大時(shí),AB⊥BC,可判定?ABCD是矩形,由矩形的性質(zhì),可得②④正確,③錯(cuò)誤,又由勾股定理求得AC=1.【詳解】∵當(dāng)?ABCD的面積最大時(shí),AB⊥BC,∴?ABCD是矩形,
∴∠A=∠C=90°,AC=BD,故③錯(cuò)誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【點(diǎn)睛】此題考查了平行四邊形的性質(zhì)、矩形的判定與性質(zhì)以及勾股定理.注意證得?ABCD是矩形是解此題的關(guān)鍵.15、丙【解析】
先比較平均數(shù)得到乙組和丙組成績(jī)較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.【詳解】因?yàn)橐医M、丙組的平均數(shù)比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績(jī)比較穩(wěn)定,所以丙組的成績(jī)較好且狀態(tài)穩(wěn)定,應(yīng)選的組是丙組.故答案為丙.【點(diǎn)睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.16、【解析】
根據(jù)相似三角形的性質(zhì),先求出正△A2B2C2,正△A3B3C3的面積,依此類(lèi)推△AnBnCn的面積是,從而求出第8個(gè)正△A8B8C8的面積.【詳解】正△A1B1C1的面積是,而△A2B2C2與△A1B1C1相似,并且相似比是1:2,則面積的比是,則正△A2B2C2的面積是×;因而正△A3B3C3與正△A2B2C2的面積的比也是,面積是×()2;依此類(lèi)推△AnBnCn與△An-1Bn-1Cn-1的面積的比是,第n個(gè)三角形的面積是()n-1.所以第8個(gè)正△A8B8C8的面積是×()7=.故答案為.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)及應(yīng)用,相似三角形面積的比等于相似比的平方,找出規(guī)律是關(guān)鍵.17、x<-2或x>1【解析】試題分析:根據(jù)函數(shù)圖象可得:當(dāng)時(shí),x<-2或x>1.考點(diǎn):函數(shù)圖象的性質(zhì)18、(3,2).【解析】
過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,先由垂徑定理求出OD的長(zhǎng),再根據(jù)勾股定理求出PD的長(zhǎng),故可得出答案.【詳解】過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、【發(fā)現(xiàn)】(3)的長(zhǎng)度為;(2)重疊部分的面積為;【探究】:點(diǎn)P的坐標(biāo)為;或或;【拓展】t的取值范圍是或,理由見(jiàn)解析.【解析】
發(fā)現(xiàn):(3)先確定出扇形半徑,進(jìn)而用弧長(zhǎng)公式即可得出結(jié)論;(2)先求出PA=3,進(jìn)而求出PQ,即可用面積公式得出結(jié)論;探究:分圓和直線AB和直線OB相切,利用三角函數(shù)即可得出結(jié)論;拓展:先找出和直角三角形的兩邊有兩個(gè)交點(diǎn)時(shí)的分界點(diǎn),即可得出結(jié)論.【詳解】[發(fā)現(xiàn)](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的長(zhǎng)度為.故答案為;(2)設(shè)⊙P半徑為r,則有r=2﹣3=3,當(dāng)t=2時(shí),如圖3,點(diǎn)N與點(diǎn)A重合,∴PA=r=3,設(shè)MP與AB相交于點(diǎn)Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重疊部分=S△APQPQ×AQ.即重疊部分的面積為.[探究]①如圖2,當(dāng)⊙P與直線AB相切于點(diǎn)C時(shí),連接PC,則有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴點(diǎn)P的坐標(biāo)為(3,0);②如圖3,當(dāng)⊙P與直線OB相切于點(diǎn)D時(shí),連接PD,則有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴點(diǎn)P的坐標(biāo)為(,0);③如圖2,當(dāng)⊙P與直線OB相切于點(diǎn)E時(shí),連接PE,則有PE⊥OB,同②可得:OP;∴點(diǎn)P的坐標(biāo)為(,0);[拓展]t的取值范圍是2<t≤3,2≤t<4,理由:如圖4,當(dāng)點(diǎn)N運(yùn)動(dòng)到與點(diǎn)A重合時(shí),與Rt△ABO的邊有一個(gè)公共點(diǎn),此時(shí)t=2;當(dāng)t>2,直到⊙P運(yùn)動(dòng)到與AB相切時(shí),由探究①得:OP=3,∴t3,與Rt△ABO的邊有兩個(gè)公共點(diǎn),∴2<t≤3.如圖6,當(dāng)⊙P運(yùn)動(dòng)到PM與OB重合時(shí),與Rt△ABO的邊有兩個(gè)公共點(diǎn),此時(shí)t=2;直到⊙P運(yùn)動(dòng)到點(diǎn)N與點(diǎn)O重合時(shí),與Rt△ABO的邊有一個(gè)公共點(diǎn),此時(shí)t=4;∴2≤t<4,即:t的取值范圍是2<t≤3,2≤t<4.【點(diǎn)睛】本題是圓的綜合題,主要考查了弧長(zhǎng)公式,切線的性質(zhì),銳角三角函數(shù),三角形面積公式,作出圖形是解答本題的關(guān)鍵.20、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②點(diǎn)P的坐標(biāo)是(,1);(3)存在,滿足題意的P坐標(biāo)為(6,6)或(6,2+2)或(6,1﹣2).【解析】分析:(1)設(shè)直線DP解析式為y=kx+b,將D與B坐標(biāo)代入求出k與b的值,即可確定出解析式;
(2)①當(dāng)P在AC段時(shí),三角形ODP底OD與高為固定值,求出此時(shí)面積;當(dāng)P在BC段時(shí),底邊OD為固定值,表示出高,即可列出S與t的關(guān)系式;
②設(shè)P(m,1),則PB=PB′=m,根據(jù)勾股定理求出m的值,求出此時(shí)P坐標(biāo)即可;
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標(biāo)性質(zhì)求出P坐標(biāo)即可.詳解:(1)如圖1,∵OA=6,OB=1,四邊形OACB為長(zhǎng)方形,∴C(6,1).設(shè)此時(shí)直線DP解析式為y=kx+b,把(0,2),C(6,1)分別代入,得,解得則此時(shí)直線DP解析式為y=x+2;(2)①當(dāng)點(diǎn)P在線段AC上時(shí),OD=2,高為6,S=6;當(dāng)點(diǎn)P在線段BC上時(shí),OD=2,高為6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②設(shè)P(m,1),則PB=PB′=m,如圖2,∵OB′=OB=1,OA=6,∴AB′==8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=則此時(shí)點(diǎn)P的坐標(biāo)是(,1);(3)存在,理由為:若△BDP為等腰三角形,分三種情況考慮:如圖3,①當(dāng)BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根據(jù)勾股定理得:CP1==2,∴AP1=1﹣2,即P1(6,1﹣2);②當(dāng)BP2=DP2時(shí),此時(shí)P2(6,6);③當(dāng)DB=DP3=8時(shí),在Rt△DEP3中,DE=6,根據(jù)勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),綜上,滿足題意的P坐標(biāo)為(6,6)或(6,2+2)或(6,1﹣2).點(diǎn)睛:此題屬于一次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定一次函數(shù)解析式,坐標(biāo)與圖形性質(zhì),等腰三角形的性質(zhì),勾股定理,利用了分類(lèi)討論的思想,熟練掌握待定系數(shù)法是解本題第一問(wèn)的關(guān)鍵.21、(1)100;(2)作圖見(jiàn)解析;(3)1.【解析】試題分析:(1)根據(jù)百分比=計(jì)算即可;(2)求出“打球”和“其他”的人數(shù),畫(huà)出條形圖即可;(3)用樣本估計(jì)總體的思想解決問(wèn)題即可.試題解析:(1)本次抽樣調(diào)查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計(jì)該校課余興趣愛(ài)好為“打球”的學(xué)生人數(shù)為2000×40%=1人.22、(1)證明見(jiàn)解析;(1)32【解析】試題分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線的判定即可得出結(jié)論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.試題解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點(diǎn),∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線;(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設(shè)AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=點(diǎn)睛:本題考查了切線的判定和相似三角形的性質(zhì)和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此題的關(guān)鍵.23、10【解析】【分析】先分別進(jìn)行0次冪的計(jì)算、負(fù)指數(shù)冪的計(jì)算、二次根式以及絕對(duì)值的化簡(jiǎn)、特殊角的三角函數(shù)值,然后再按運(yùn)算順序進(jìn)行計(jì)算即可.【詳解】原式=1+9-+4=10-+=10.【點(diǎn)睛】本題考查了實(shí)數(shù)的混合運(yùn)算,涉及到0指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值等,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.24、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長(zhǎng),即可得A'F的長(zhǎng),從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長(zhǎng),從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)的應(yīng)用,作出輔助線,證明△ACB≌△BFA'是解決問(wèn)題的關(guān)鍵.25、(1)DE與⊙O相切;理由見(jiàn)解析;(2).【解析】
(1)連接OD,利用圓周角定理以及等腰三角形的性質(zhì)得出OD⊥DE,進(jìn)而得出答案;(2)得出△BCD∽△ACB,進(jìn)而利用相似三角形的性質(zhì)得出CD的長(zhǎng).【詳解】解:(1)直線DE與⊙O相切.理由如下:連接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第11章 功和機(jī)械能單元檢測(cè)基礎(chǔ)卷(含解析)-八年級(jí)物理下冊(cè)(人教版)
- 獨(dú)立學(xué)習(xí)之道
- 印象派藝術(shù)漫談
- 春節(jié)環(huán)保行動(dòng)
- 初中生活的新挑戰(zhàn)
- 學(xué)習(xí)策略解析
- 各類(lèi)申請(qǐng)書(shū)格式模板
- 鋼包精煉成套設(shè)備項(xiàng)目風(fēng)險(xiǎn)識(shí)別與評(píng)估綜合報(bào)告
- 初級(jí)公司信貸-初級(jí)銀行從業(yè)資格考試《公司信貸》高頻考點(diǎn)4
- 2024年長(zhǎng)沙衛(wèi)生職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 2025屆高考數(shù)學(xué)一輪專題重組卷第一部分專題十四立體幾何綜合文含解析
- 中考數(shù)學(xué)總復(fù)習(xí)第一章第3課時(shí)二次根式課件
- 福建省泉州市南安市2024-2025學(xué)年九年級(jí)上學(xué)期期末考試語(yǔ)文試題(無(wú)答案)
- 2025年中國(guó)電子煙行業(yè)發(fā)展前景與投資戰(zhàn)略規(guī)劃分析報(bào)告
- 無(wú)人機(jī)法律法規(guī)與安全飛行 第2版空域管理
- 我的小學(xué)生活
- 醫(yī)療器材申請(qǐng)物價(jià)流程
- 人教PEP版2025年春季小學(xué)英語(yǔ)三年級(jí)下冊(cè)教學(xué)計(jì)劃
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項(xiàng)考試題庫(kù)
- 華為研發(fā)部門(mén)績(jī)效考核制度及方案
評(píng)論
0/150
提交評(píng)論