未來能源研究所-2024年全球能源展望:高峰還是高原?Global Energy Outlook 2024 Peaks or Plateaus_第1頁
未來能源研究所-2024年全球能源展望:高峰還是高原?Global Energy Outlook 2024 Peaks or Plateaus_第2頁
未來能源研究所-2024年全球能源展望:高峰還是高原?Global Energy Outlook 2024 Peaks or Plateaus_第3頁
未來能源研究所-2024年全球能源展望:高峰還是高原?Global Energy Outlook 2024 Peaks or Plateaus_第4頁
未來能源研究所-2024年全球能源展望:高峰還是高原?Global Energy Outlook 2024 Peaks or Plateaus_第5頁
已閱讀5頁,還剩92頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

GlobalEnergyOutlook2024:PeaksorPlateaus?

DanielRaimi,YuqiZhu,RichardG.Newell,andBrianC.Prest

Report24-06

April2024

AbouttheAuthors

DanielRaimiisafellowatResourcesfortheFuture(RFF)andalecturerattheGeraldR.FordSchoolofPublicPolicyattheUniversityofMichigan.Heworksonarangeof

energypolicyissueswithafocusontoolstoenableanequitableenergytransition.HehaspublishedinacademicjournalsincludingScience,ScienceAdvances,EnvironmentalScienceandTechnology,JournalofEconomicPerspectives,ReviewofEnvironmentalEconomicsandPolicy,EnergyResearchandSocialScience,andEnergyPolicy,in

popularoutletsincludingTheNewRepublic,Newsweek,Slate,andFortune,andquotedextensivelyinnationalmediaoutletssuchasCNN,NPR’sAllThingsConsidered,

NewYorkTimes,WallStreetJournal,andmanymore.Hehaspresentedhisresearchforpolicymakers,industry,andotherstakeholdersaroundtheUnitedStatesand

internationally,includingbeforetheUSSenateBudgetCommitteeandtheEnergyandMineralResourcesSubcommitteeoftheUSHouse’sNaturalResourcesCommittee.

In2017,hepublishedTheFrackingDebate(ColumbiaUniversityPress),abookthatcombinesstoriesfromhistravelstodozensofoil-andgas-producingregionswithadetailedexaminationofkeypolicyissues.

YuqiZhujoinedRFFasaseniorresearchassociatein2022afterreceivinghismaster’s

degreeinpublicpolicyfromtheHarvardKennedySchool.Priortograduateschool,he

workedincorporatedevelopmentatLibertyMedia,amediaandcommunicationsholdingcompanyinDenver.

RichardG.NewellisthepresidentandCEOofRFF,anindependentnonprofitresearch

institutionthatimprovesenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.Hehasheldseniorgovernment

appointmentsastheAdministratoroftheUSEnergyInformationAdministrationandastheSeniorEconomistforenergyandenvironmentonthePresident’sCouncilofEconomicAdvisers.Dr.NewellwaspreviouslytheGendellProfessorofEnergyandEnvironmentalEconomicsatDukeandDirectorofitsEnergyInitiativeandisnowadjunctprofessor.Hehaspublishedwidelyontheeconomicsofmarketsandpoliciesforclimatechange,the

cleanenergytransition,andtechnologyinnovation.HeisaboardmemberoradvisorattheNationalAcademyofSciencesClimateSecurityRoundtable,theEuro-MediterraneanCenteronClimateChange,theNationalPetroleumCouncil,andseveralotherinstitutionsandco-chairedaformativeNationalAcademiesstudyonthesocialcostofgreenhousegases.NewellholdsaPhDfromHarvardandanMPAfromPrinceton.

BrianC.PrestisaneconomistandfellowatRFFspecializingintheeconomicsofclimatechange,energyeconomics,andoilandgassupply.Prestuseseconomictheoryand

econometricstoimproveenergyandenvironmentalpoliciesbyassessingtheirimpactsonsociety.Hisrecentworkincludesimprovingthescientificbasisofthesocialcost

ofcarbonandeconomicmodelingofvariouspoliciesaroundoilandgassupply.His

researchhasbeenpublishedinpeer-reviewedjournalssuchasNature,theBrookings

PapersonEconomicActivity,theJournaloftheAssociationofEnvironmentaland

ResourceEconomists,andtheJournalofEnvironmentalEconomicsandManagement.

HisworkhasalsobeenfeaturedinpopularpressoutletsincludingtheWashingtonPost,theWallStreetJournal,theNewYorkTimes,Reuters,theAssociatedPress,andBarron’s.

ResourcesfortheFuturei

Acknowledgements

WethankStuIler,whoinitiallydevelopedtheplatformforharmonizingoutlooks.

WearealsogratefultoLauraCozziandDavideD’AmbrosioattheIEA,AprilRossatExxonMobil,ChristianMollardatEnerdata,AstridN?vikatEquinor,MichaelCohen

andJorgeBlazquezatbp,GeorgiosBoniasatShell,andtheEIAmacroeconomicsandemissionsteamforprovidingdataandrespondingtoquestionsinthepreparationofthisreport.RichardG.Newellconceivedoftheproject;DanielRaimiandYuqiZhuleddatacollectionandharmonization;andDanielRaimileddataanalysisanddraftingofthereport,withtheexceptionsofSections3.1(YuqiZhu)and3.2(BrianC.Prest).Allauthorsreviewedandapprovedofthefinaldraft.

AboutRFF

ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin

Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis

committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.

TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.

SharingOurWork

OurworkisavailableforsharingandadaptationunderanAttribution-

NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgive

appropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonable

manner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit

/licenses/by-nc-nd/4.0/

.

GlobalEnergyOutlook2024:PeaksorPlateaus?ii

Highlights

Coal,oil,andnaturalgasconsumptionreachtheirhighestpointsbefore2030butremainhighthrough2050inmanyscenarios.Achievinginternationalclimatetargetswill

requireallthreefossilfuelstodeclinemuchmorequickly,resemblingapeak,notaplateau.

Althoughtheyarecontroversialforavarietyofreasons,carbondioxideremoval(CDR)technologiesaredeployedrapidlyandatscaleineveryscenariothatlimitsglobal

warmingto1.5°Cor2°Cby2100.Thissuggeststheneedforthedevelopmentofrobustmonitoring,reporting,andverificationstandards,alongwithadditionalmeasurestopreventCDRfromcreatingmajornewenvironmentalorsocialchallenges.

Projecteddemandforenergy-relatedmetalsandmineralsgrowsrapidly,particularlyunderAmbitiousClimate

scenarios,risingbyordersofmagnitudeforsomecriticalminerals.Suchgrowthraisesnewquestionsoversupplycosts,geopolitics,localenvironmentalimpacts,andmore.

AtCOP28intheUAE,22nationspledgedtotriplenuclearenergycapacityby2050.Achievingthisgoalatthegloballevelwouldrequireareturntogrowthratesnotseensincethe1980s.Since2010,globalnuclearenergyproductionhasdeclinedbynearly5percent,dueprimarilytoplant

closuresinEurope,Japan,andtheUnitedStates.

ProjectedenergydemandinChinahasbeenrevised

downwardsubstantiallyinrecentyears,reflectinga

decliningpopulationandmajoreconomicheadwinds.Coupledwithnewpoliciesconcerningairqualityandclimatechange,thesetrendsarecontributingtolowerprojectedcoaluseandcarbondioxideemissionsinthedecadesahead.

ResourcesfortheFutureiii

Contents

1.Introduction1

2.KeyFindings3

3.InFocus13

3.1.China’sEvolvingEnergyFutureagainstaForebodingEconomicOutlook13

3.2.EmergingTechnologiesforAchievingNetZero17

3.2.1.Hydrogen17

3.2.2.CarbonCapture,Use,andStorage(CCUS)andDirectAirCapture(DAC)19

3.2.3.BacktotheFuture(ofthePast)20

3.3.ANewEraofMining21

3.3.1.Cobalt22

3.3.2.Copper23

3.3.3.Lithium24

3.3.4.Nickel25

3.3.5.OtherMinerals26

4.DataandMethods27

4.1.Harmonization29

5.Statistics31

References40

GlobalEnergyOutlook2024:PeaksorPlateaus?iv

1.Introduction

Thefutureoftheglobalenergysystemisdeeplyuncertain,andthechoicesthataremadeinthecomingyearswillhaveenormousconsequencesforthefutureoftheclimateand,indeed,humancivilization.Tounderstandhowourenergysystemischanging,eachyearavarietyoforganizationsproducelong-termprojections

thatimagineawiderangeoffuturesbasedondivergentvisionsaboutpolicies,

technologies,prices,andgeopolitics.

Becausetheseprojectionsvarywidelyanddependheavilyontheirvariedassumptionsandmethodologies,theyaredifficulttocompareonanapples-to-applesbasis.Inthisreport,weapplyadetailedharmonizationprocesstocompare16scenariosacross

eightenergyoutlookspublishedin2023,aswellastwohistoricaldatasources.Takentogether,thesescenariosofferabroadscopeofpotentialchangestotheenergy

systemasenvisionedbysomeofitsmostknowledgeableorganizations.Table1liststhehistoricaldatasets,outlooks,andscenariosexaminedhere,andadditionaldetailisprovidedinSection4.

Table1.Datasets,Outlooks,andScenariosExaminedinThisReport

Source

Datasetoroutlook

Scenario(s)

Years

Grubler(2008)1

Historical

1800–1970

IEA(2022)2

Historical

1970–2021

bp(2023)3

EnergyOutlook2023

NewMomentum,AcceleratedTransition,NetZero

To2050

EIA(2023)4

InternationalEnergyOutlook2023

Reference

To2050

Enerdata(2023)5

EnerFuture2023

EnerBase,EnerBlue,EnerGreen

To2050

Equinor(2023)6

2023EnergyPerspectives

Walls,Bridges

To2050

ExxonMobil(2023)7

2023GlobalOutlook

Reference

To2050

IEA(2023)8

WorldEnergyOutlook2023

StatedPolicies(STEPS),AnnouncedPledges(APS),NetZeroEmissionsby2050(NZE)

To2050

OPEC(2023)9

WorldOilOutlook2023

Reference

To2045

Shell(2023)10

EnergySecurityScenarios

Archipelagos,Sky2050

To2100

GlobalEnergyOutlook2024:PeaksorPlateaus?1

AbriefdescriptionofourmethodologyisprovidedinSection4,withselectindicatorsinSection5.Forthefullmethodologyandinteractivegraphingtools,visit

/geo

.

Throughoutthefiguresincludedinthisreport,weuseaconsistentlabelingsystemthatdistinguishesamongthedifferenttypesofscenarios(seeTable2):

?ForReferencescenarios,whichassumelimitedornonewpolicies,weuse

long-dashedlines;thissetcomprisesReferencescenariosfromtheUSEnergyInformationAdministration(EIA),Enerdata’sEnerBase,ExxonMobil,andOPEC.

?ForEvolvingPoliciesscenarios,whichassumethatpoliciesandtechnologies

developaccordingtorecenttrendsortheexpertviewsoftheteamproducingtheoutlook,weusesolidlines;thissetcomprisesbpNewMomentumandIEASTEPS.Althoughtheydonotfollowthesamesetsofassumptions,wealsoincludeEquinorWallsandShellArchipelagosbecausetheirCO2emissionstrajectoriesaresimilartothoseinotherEvolvingPoliciesscenarios.Inaddition,weincludeEnerdata’s

EnerBlueandIEA’sAPS,whichassumegovernmentsimplementtheirnationallydeterminedcontributions(NDCs)undertheParisAgreement;forthese,weusedot-dashlines.

?AmbitiousClimatescenariosarenotdesignedaroundpoliciesbutinsteadare

structuredtoachievespecificclimatetargets.Forthosethatlimitglobalmean

temperaturerisetobelow2°Cby2100(bp’sAcceleratedTransitionandEnerdata’sEnerGreen),weuseshort-dashedlines.Forscenariosdesignedtolimitglobal

meantemperatureriseto1.5°Cby2100ornet-zeroemissionsby2050(bpNetZero,EquinorBridges,IEANZE,andShell’sSky2050),weusedottedlines.

Table2.LegendforDifferentScenarioTypes

Reference

Evolvingpolicies

Ambitiousclimate

EIA

bpNewMomentum

bpAccel.Transition(2°C)

EnerdataEnerbase

IEASteps

EnerdataEnerGreen(2°C)

ExxonMobil

EquinorWalls

bpNetZero(1.5°C)

OPEC

ShellArchipelagos

EquinorBridges(1.5°C)

EnerdataEnerBlue

IEANZE(1.5°C)

IEAAPS

ShellSky2050(1.5°C)

FiguresandtablesinthisreportsometimesrefertoregionalgroupingsofEastandWest.Table3definesthoseregionalgroupings.

Table3.RegionalDefinitionsfor“East”and“West”

“East”

Africa,Asia-Pacific,MiddleEast

“West”

Americas,Europe,Eurasia

ResourcesfortheFuture2

2.KeyFindings

Atthe28thConferenceoftheParties(COP28)totheUnitedNationsFramework

ConventiononClimateChangeheldinDubai,worldleadersagreedto“transitioningawayfromfossilfuelsintheenergysystem.”11Someadvocates,governments,and

civilsocietyfigureshavecritiquedthisagreementandarguedinsteadforthetotal

phaseoutoffossilfuelstoachievelong-termclimategoals.However,allscenarios

examinedhere,includingthoseconsistentwithlimitingwarmingto1.5°Cby2100,showsubstantialglobalfossilfuelconsumptionthroughatleast2050,suggestingthata

phaseoutisnotaprerequisitetoachievinginternationalclimategoals.

Figure1.GlobalFossilFuelDemandPeaksandDeclinesRapidlyinAmbitiousClimateScenarios

Note:Includesprimaryenergydemandforcoal,oil,andnaturalgas.HistoricaldatafromShell.

AswehavenotedinpreviousGlobalEnergyOutlooks,12worldprimaryenergydemandhasexperiencedaseriesofenergyadditions,notenergytransitions,withnewer

technologiessuchasnuclear,wind,andsolarbuildingontopofincumbentsourcessuchasbiomass,coal,oil,andnaturalgas.Toachieveinternationalclimategoalsandlimitwarmingto1.5°Cor2°Cby2100,atrueenergytransitionisneeded.Butdoes

achievingsuchgoalsrequirephasingoutfossilfuelsentirely?

Thescenariosweanalyzeinthisreportsuggestthattheanswerisno.Likemost

scenariospublishedinrecentyearsbytheIntergovernmentalPanelonClimateChange(IPCC),13,14fossilfuelusedeclinesbutremainssubstantialthroughmidcenturyand

beyond,evenunderscenariosthatlimitwarmingto1.5°C.SeveralAmbitiousClimate

scenariosshowglobalfossilfueluseofroughly100quadrillionBritishthermalunits

(QBtu)in2050,slightlyhigherthantotalUSprimaryenergydemand.Thewiderangeofprojectedfossilfueldemandalsohighlightsthedeepuncertaintyofthefutureoftheworldenergysystem,with2050scenariosspanning487QBtu,roughlyequivalentto

globalconsumptionoffossilfuelsin2022.

GlobalEnergyOutlook2024:PeaksorPlateaus?3

Iffossilfuelsarenotphasedoutoftheenergysystem,limitingwarmingtointernational

climatetargetsimpliesasubstantialscale-upofcarbonremovaltechnologies,including

directaircapture(DAC),bioenergywithcarboncaptureandstorage(CCS),andnature-

basedsolutions,allofwhichwillrequirerobustmonitoring,reporting,andverification.

Althoughthesetechnologiesarecontroversialforavarietyofreasons,theirapplicationatscaleisanessentialtoolinreachingnet-zeroemissionsineveryAmbitiousClimatescenarioexaminedhere.

Figure2.WorldCarbonCapture,Use,andStorageRisesSharplyinAmbitiousClimateScenarios

Note:HistoricaldatafromIEA.AllscenariosexceptthosefromEquinorexcludenature-basedsolutionssuchasafforestationandreforestation.

In2022,roughly42millionmetrictonsofCO2werecapturedbyCCUSinfrastructurearoundtheworld.Althoughthisaccountsforjust0.1percentofannualglobalCO2emissions,italsorepresentsaneartriplingofCCUSsince2010,acompoundaverageannualgrowthrate

(CAAGR)of8.7percent.UnderEvolvingPoliciesscenarios,comparableCAAGRsemerge

through2050,rangingfrom8.2percent(IEASTEPS)to12.5percent(bpNewMomentum).UnderAmbitiousClimatescenarios,however,CCUSdeploymentincreasesbymorethan

twoordersofmagnitudeby2050,growingby14-to16-fold,oraCAAGRof19to20percent.

Arethesegrowthratesachievable?Technicallyspeaking,theanswerisyes.CCUS

infrastructureandundergroundstoragereservoirsaremorethanadequatetohandlethesevolumesofCO215However,thefuturecostsofdeployingthesetechnologies,includingtorelativelynovelsectorssuchaselectricpowergeneration(mostCCUStodayisusedintheindustrialsector),16arenotwellunderstood.

Inaddition,CCUStechnologiesarecontroversialandmaybeunwelcomeinsomeregions,inlargepartbecausetheymaynotreduce,andinsomecasesmayexacerbate,emissionsofotherairpollutantsfrompointsources17Theyalsodonotreducewaterpollutionorotherconsequencesoffossilfuelextraction,transportation,refining,andcombustion.

ResourcesfortheFuture4

Astheglobaleconomybecomesmoreenergyefficient,worldprimaryenergydemand

growsslowlyordeclinesunderalmostallscenariosexaminedhere.Thistrendisseen

mostclearlyinAmbitiousClimatescenarios,whereaggregateenergydemanddeclines

byasmuchas33percent(EquinorBridges).Fallingenergydemandoccursprimarilyin

high-incomecountries,withcontinuedgrowthinenergyconsumptioninmanylow-incomenations.Somescenarios,suchastheIEA’sNZE,highlighthowexpandingaccesstomodernenergyservicesinlow-incomeregionscanbeconsistentwithdecliningglobalenergy

demandandachievinglong-termsustainabilitygoals.

Figure3.WorldPrimaryEnergyDemandGrowsModestlyorDeclinesUnderMostScenarios

Note:Projectionsareorderedfromhighesttolowestdemandforfossilfuels.HistoricaldatafromIEA.“Liquids”includesoilonlyforEnerdatascenarios.“Biomass”excludesbiofuels,whichareincludedin“Liquids.”O(jiān)PECprojectionsarefor2045.“Other”includeswindandsolarforEquinorandOPEC.

Coaldemanddeclinesrelativeto2022ineveryscenarioexaminedhere,rangingfrom2

percent(EIA)to93percent(EquinorBridges)lowerby2050.Similarly,oildemandislowerattheendoftheprojectionperiodforallbutfourscenarios,whereitgrowsslowly.Liquidsdemand,whichincorporatesbiofuels,increasesby2050insixscenarios(EIA,EnerBase,

ExxonMobil,IEASTEPS,OPEC,andShellArchipelagos).Projectionsfornaturalgasdemandaremoremixed,withroughlyhalfshowinggrowthandhalfshowingreductions.Underall

AmbitiousClimatescenarios,globalgasdemandfallsconsiderably,rangingfromadropof59percent(bpNetZero)to78percent(EnerGreenandIEANZE)relativeto2022levels.

Windandsolargrowfasterthananyothersourcesinpercentagetermsunderallscenarios,butwithawiderange.Forexample,EIAprojectsglobalwindenergytoroughlytripleovertheprojectionperiod,themostbearishscenario.EvolvingPoliciesscenariossuchasIEA

STEPSshowwindgrowing5-fold,whilesolargrowsmorethan10-fold.UnderAmbitious

Climatescenarios,solarandwindtogetherrisefrom2percentoftheenergymixin2022toroughlyone-thirdormoreby2050.

GlobalEnergyOutlook2024:PeaksorPlateaus?5

Overthelast40years,thecarbonintensityoftheworld’sprimaryenergymixhas

remainedroughlyflat,decliningmodestlyfrom2010throughtoday.Inthedecades

ahead,carbonintensityisprojectedtocontinuethismodestdeclineunderReferenceandmostEvolvingPoliciesscenarios.Achievingambitiousclimategoals,however,willrequireanunprecedentedreductioninthecarbonintensityofenergy.

Figure4.AmbitiousClimateScenariosEnvisionUnprecedentedImprovementinCarbonIntensity

Note:HistoricaldatafromShell.NetCO2emissions(i.e.,inclusiveofnegativeemissions)perunitofprimaryenergydemandareshownhere.

From2010through2021,globalcarbonintensityofprimaryenergyfellbyaCAAGRof0.4percent.Thisdeclineacceleratesunderallscenarios,rangingfromalowof0.6percentonaverageannually(EIA)toahighof12.8percentormoreonaverageannuallyfrom2022to2050(EquinorBridgesandIEANZE).

Isthererecentprecedentforsuchrapidreductionsincarbonintensityatanationalorregionalscale?Unfortunately,theanswerisno.TheUnitedStates,SouthKorea,and

theUKrespectivelyreducedtheircarbonintensitiesbyanaverageof1.1,1.2,and1.3

percentannuallyfrom2010through2022.AndinSweden,carbonintensitydeclinedby1.9percentonaverageduringthisperiod.

Otheraffluentnationsexperiencedlessprogress,particularlyduetotheclosureof

nuclearpowerfacilities.Forexample,Germany’scarbonintensitydeclinedbyonly

0.2percentonaverageperyearfrom2010through2022,whileJapan’sincreasedby0.9percentannuallyonaverage.Thesefigureshighlightthescaleofthechallenge

facingglobalpolicymakersandpointtotheimportanceofretaininglow-carbonenergysourceswheretheycancontinueoperatingsafely.

ResourcesfortheFuture6

WorldleadersatCOP28agreedto“triplingrenewableenergycapacityglobally”to11,000gigawatts(GW)by203011,18Achievingthisgoalwouldrequireunprecedentedgrowthacrossmultipletechnologies,particularlywindandsolar.ThreeAmbitious

Climatescenarios(IEANZE,EnerGreen,andShellSky2050)achievethe2030goal,butthesescenariosarenotbasedonexistingorannouncedpolicies,highlightingtheneedforenhancedpolicyambitionifnationsaretoachievetheirCOP28renewableenergygoals.

Figure5.RenewableElectricityCapacityTriplesby2030UnderThreeScenarios

Note:HistoricaldatafromEIA.“Renewables”includeshydro,biomass,wind,solar,geothermal,andtidalenergy.ProjectionsaretakendirectlyfromEIAandIEA.Projectionsforother

organizationsareestimatedbasedonrenewableelectricitygenerationprojectionsfromeachorganization,convertedtocapacityassumingcapacityfactorsimputedfromtheIEAAPS.

In2010,renewableelectricitywasdominatedbyhydropower,whichaccounted

formorethan75percentofinstalledcapacityworldwide.Overthenext10years,

renewablecapacitymorethandoubled,growingby125percent,overwhelminglyledbywindandsolarphotovoltaic(PV),whichaccountedformorethan75percentofcapacityadditions,followedbyhydroat18percent.

From2020to2022,solarledafurtheraccelerationofrenewablesgrowth,which

increasedatanannualrateofmorethan10percent,or320GWperyear.Toreach11,000GWofrenewablecapacityby2030,annualcapacityadditionswouldneedtoaverageroughly800GWperyearfrom2022.Forperspective,in2022,globalwindcapacitywas832GWandsolarwas892GW,highlightingtheunprecedentedrateofgrowthneededtoachievetherenewableenergygoalagreeduponatCOP28.

GlobalEnergyOutlook2024:PeaksorPlateaus?7

AtCOP28,22nationscommittedtotriplingtheirnuclearenergycapacityby2050.Achieving

thisgoalwouldrequireafundamentalchangeinthetrajectoryofnuclearenergyfor

developednations,as12ofthe22experienceddecliningnuclearenergyproductionfrom2012through2022,while5currentlyproducenonuclearpower19Inrecentyears,nuclearenergy

growthhasbeenledbyChinaandIndia.AlthoughneitherofthesecountrieswaspartoftheannouncementatCOP28,theywerethetoptwonationsfornuclearpowerplantconstructionasofDecember2023.20Globally,nuclearcapacityisprojectedtogrowmodestlyundermostscenarios,and2022levelstripleby2050injusttwoscenarios,bothfromEnerdata.

Figure6.WorldNuclearPowerCapacityTriplesby2050UnderJustTwoScenarios

Note:HistoricaldatafromShell.CapacitydataaretakenfromoriginalinEIA,IEA,andShellandestimatedbasedonnuclearelectricitygenerationfrombp,Enerdata,Equinor,andExxonMobil,assumingplantsoperatedattheaverageglobalcapacityfactorin2020–22.

Projectionsforthegrowthofnuclearcapacityspanroughly800GW,nearlytwicethe

installedcapacityin2022.EvenacrossscenarioswithsimilarCO2emissionstrajectories,

projectionsvarywidely.F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論