版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
圓錐曲線——講義第01講橢圓【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:橢圓的定義平面內(nèi)一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和等于常數(shù)(),這個(gè)動(dòng)點(diǎn)的軌跡叫橢圓.這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫作橢圓的焦距.知識(shí)點(diǎn)詮釋:若,則動(dòng)點(diǎn)的軌跡為線段;若,則動(dòng)點(diǎn)的軌跡無圖形.知識(shí)點(diǎn)二:橢圓的標(biāo)準(zhǔn)方程1.當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;2.當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;知識(shí)點(diǎn)詮釋:3.這里的“標(biāo)準(zhǔn)”指的是中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸建立直角坐標(biāo)系時(shí),才能得到橢圓的標(biāo)準(zhǔn)方程;4.在橢圓的兩種標(biāo)準(zhǔn)方程中,都有和;5.橢圓的焦點(diǎn)總在長軸上.當(dāng)焦點(diǎn)在軸上時(shí),橢圓的焦點(diǎn)坐標(biāo)為,;當(dāng)焦點(diǎn)在軸上時(shí),橢圓的焦點(diǎn)坐標(biāo)為,;6.在兩種標(biāo)準(zhǔn)方程中,∵a2>b2,∴可以根據(jù)分母的大小來判定焦點(diǎn)在哪一個(gè)坐標(biāo)軸上.知識(shí)點(diǎn)三:求橢圓的標(biāo)準(zhǔn)方程求橢圓的標(biāo)準(zhǔn)方程主要用到以下幾種方法:(1)待定系數(shù)法:①若能夠根據(jù)題目中條件確定焦點(diǎn)位置,可先設(shè)出標(biāo)準(zhǔn)方程,再由題設(shè)確定方程中的參數(shù)a,b,即:“先定型,再定量”.②由題目中條件不能確定焦點(diǎn)位置,一般需分類討論;有時(shí)也可設(shè)其方程的一般式:.(2)定義法:先分析題設(shè)條件,判斷出動(dòng)點(diǎn)的軌跡,然后根據(jù)橢圓的定義確定方程,即“先定型,再定量”。利用該方法求標(biāo)準(zhǔn)方程時(shí),要注意是否需先建立平面直角坐標(biāo)系再解題.知識(shí)點(diǎn)四:橢圓的簡單幾何性質(zhì)我們根據(jù)橢圓來研究橢圓的簡單幾何性質(zhì)橢圓的范圍橢圓上所有的點(diǎn)都位于直線x=±a和y=±b所圍成的矩形內(nèi),所以橢圓上點(diǎn)的坐標(biāo)滿足|x|≤a,|y|≤b.橢圓的對(duì)稱性對(duì)于橢圓標(biāo)準(zhǔn)方程,把x換成-x,或把y換成-y,或把x、y同時(shí)換成-x、-y,方程都不變,所以橢圓是以x軸、y軸為對(duì)稱軸的軸對(duì)稱圖形,且是以原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,這個(gè)對(duì)稱中心稱為橢圓的中心。橢圓的頂點(diǎn)①橢圓的對(duì)稱軸與橢圓的交點(diǎn)稱為橢圓的頂點(diǎn)。②橢圓(a>b>0)與坐標(biāo)軸的四個(gè)交點(diǎn)即為橢圓的四個(gè)頂點(diǎn),坐標(biāo)分別為A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)。③線段A1A2,B1B2分別叫做橢圓的長軸和短軸,|A1A2|=2a,|B1B2|=2b。a和b分別叫做橢圓的長半軸長和短半軸長。橢圓的離心率①橢圓的焦距與長軸長度的比叫做橢圓的離心率,用e表示,記作.②因?yàn)閍>c>0,所以e的取值范圍是0<e<1。e越接近1,則c就越接近a,從而越小,因此橢圓越扁;反之,e越接近于0,c就越接近0,從而b越接近于a,這時(shí)橢圓就越接近于圓。當(dāng)且僅當(dāng)a=b時(shí),c=0,這時(shí)兩個(gè)焦點(diǎn)重合,圖形變?yōu)閳A,方程為x2+y2=a2。知識(shí)點(diǎn)五:橢圓標(biāo)準(zhǔn)方程中的三個(gè)量a、b、c的幾何意義橢圓標(biāo)準(zhǔn)方程中,a、b、c三個(gè)量的大小與坐標(biāo)系無關(guān),是由橢圓本身的形狀大小所確定的,分別表示橢圓的長半軸長、短半軸長和半焦距長,均為正數(shù),且三個(gè)量的大小關(guān)系為:a>b>0,a>c>0,且a2=b2+c2??山柚聢D幫助記憶:a、b、c恰構(gòu)成一個(gè)直角三角形的三條邊,其中a是斜邊,b、c為兩條直角邊。和a、b、c有關(guān)的橢圓問題常與與焦點(diǎn)三角形有關(guān),這樣的問題考慮到用橢圓的定義及余弦定理(或勾股定理)、三角形面積公式相結(jié)合的方法進(jìn)行計(jì)算與解題,將有關(guān)線段、、,有關(guān)角()結(jié)合起來,建立、之間的關(guān)系.知識(shí)點(diǎn)六:橢圓兩個(gè)標(biāo)準(zhǔn)方程幾何性質(zhì)的比較標(biāo)準(zhǔn)方程圖形性質(zhì)焦點(diǎn),,焦距范圍,,對(duì)稱性關(guān)于x軸、y軸和原點(diǎn)對(duì)稱頂點(diǎn),,軸長軸長=,短軸長=離心率知識(shí)點(diǎn)詮釋:橢圓,(a>b>0)的相同點(diǎn)為形狀、大小都相同,參數(shù)間的關(guān)系都有a>b>0和,a2=b2+c2;不同點(diǎn)為兩種橢圓的位置不同,它們的焦點(diǎn)坐標(biāo)也不相同;橢圓的焦點(diǎn)總在長軸上,因此已知標(biāo)準(zhǔn)方程,判斷焦點(diǎn)位置的方法是:看x2、y2的分母的大小,哪個(gè)分母大,焦點(diǎn)就在哪個(gè)坐標(biāo)軸上。第02講雙曲線【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:雙曲線的定義在平面內(nèi),到兩個(gè)定點(diǎn)、的距離之差的絕對(duì)值等于常數(shù)(大于0且)的動(dòng)點(diǎn)的軌跡叫作雙曲線.這兩個(gè)定點(diǎn)、叫雙曲線的焦點(diǎn),兩焦點(diǎn)的距離叫作雙曲線的焦距.知識(shí)點(diǎn)詮釋:1.雙曲線的定義中,常數(shù)應(yīng)當(dāng)滿足的約束條件:,這可以借助于三角形中邊的相關(guān)性質(zhì)“兩邊之差小于第三邊”來理解;2.若去掉定義中的“絕對(duì)值”,常數(shù)滿足約束條件:(),則動(dòng)點(diǎn)軌跡僅表示雙曲線中靠焦點(diǎn)的一支;若(),則動(dòng)點(diǎn)軌跡僅表示雙曲線中靠焦點(diǎn)的一支;3.若常數(shù)滿足約束條件:,則動(dòng)點(diǎn)軌跡是以F1、F2為端點(diǎn)的兩條射線(包括端點(diǎn));4.若常數(shù)滿足約束條件:,則動(dòng)點(diǎn)軌跡不存在;5.若常數(shù),則動(dòng)點(diǎn)軌跡為線段F1F2的垂直平分線。知識(shí)點(diǎn)二:雙曲線的標(biāo)準(zhǔn)方程6.當(dāng)焦點(diǎn)在軸上時(shí),雙曲線的標(biāo)準(zhǔn)方程:,其中;7.當(dāng)焦點(diǎn)在軸上時(shí),雙曲線的標(biāo)準(zhǔn)方程:,其中橢圓、雙曲線的區(qū)別和聯(lián)系:橢圓雙曲線根據(jù)|MF1|+|MF2|=2a根據(jù)|MF1|-|MF2|=±2aa>c>0,a2-c2=b2(b>0)0<a<c,c2-a2=b2(b>0),(a>b>0),(a>0,b>0,a不一定大于b)(a最大)(c最大)標(biāo)準(zhǔn)方程統(tǒng)一為:方程Ax2+By2=C(A、B、C均不為零)表示雙曲線的條件方程Ax2+By2=C可化為,即,所以只有A、B異號(hào),方程表示雙曲線。當(dāng)時(shí),雙曲線的焦點(diǎn)在x軸上;當(dāng)時(shí),雙曲線的焦點(diǎn)在y軸上。知識(shí)點(diǎn)詮釋:8.當(dāng)且僅當(dāng)雙曲線的對(duì)稱中心在坐標(biāo)原點(diǎn),對(duì)稱軸是坐標(biāo)軸,雙曲線的方程才是標(biāo)準(zhǔn)方程形式。此時(shí),雙曲線的焦點(diǎn)在坐標(biāo)軸上。9.雙曲線標(biāo)準(zhǔn)方程中,a、b、c三個(gè)量的大小與坐標(biāo)系無關(guān),是由雙曲線本身所確定的,分別表示雙曲線的實(shí)半軸長、虛半軸長和半焦距長,均為正數(shù),且三個(gè)量的大小關(guān)系為:c>a,c>b,且c2=b2+a2。10.雙曲線的焦點(diǎn)總在實(shí)軸上,因此已知標(biāo)準(zhǔn)方程,判斷焦點(diǎn)位置的方法是:看x2、y2的系數(shù),如果x2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在x軸上;如果y2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在y軸上。11.對(duì)于雙曲線,a不一定大于b,因此不能像橢圓那樣通過比較分母的大小來判定焦點(diǎn)在哪一條坐標(biāo)軸上。知識(shí)點(diǎn)三:求雙曲線的標(biāo)準(zhǔn)方程①待定系數(shù)法:由題目條件確定焦點(diǎn)的位置,從而確定方程的類型,設(shè)出標(biāo)準(zhǔn)方程,再由條件確定方程中的參數(shù)、、的值。其主要步驟是“先定型,再定量”;②定義法:由題目條件判斷出動(dòng)點(diǎn)的軌跡是什么圖形,然后再根據(jù)定義確定方程。知識(shí)點(diǎn)四:雙曲線的簡單幾何性質(zhì)雙曲線(a>0,b>0)的簡單幾何性質(zhì)范圍雙曲線上所有的點(diǎn)都在兩條平行直線x=-a和x=a的兩側(cè),是無限延伸的。因此雙曲線上點(diǎn)的橫坐標(biāo)滿足x≤-a或x≥a.對(duì)稱性對(duì)于雙曲線標(biāo)準(zhǔn)方程(a>0,b>0),把x換成-x,或把y換成-y,或把x、y同時(shí)換成-x、-y,方程都不變,所以雙曲線(a>0,b>0)是以x軸、y軸為對(duì)稱軸的軸對(duì)稱圖形,且是以原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,這個(gè)對(duì)稱中心稱為雙曲線的中心。頂點(diǎn)①雙曲線與它的對(duì)稱軸的交點(diǎn)稱為雙曲線的頂點(diǎn)。②雙曲線(a>0,b>0)與坐標(biāo)軸的兩個(gè)交點(diǎn)即為雙曲線的兩個(gè)頂點(diǎn),坐標(biāo)分別為A1(-a,0),A2(a,0),頂點(diǎn)是雙曲線兩支上的點(diǎn)中距離最近的點(diǎn)。③兩個(gè)頂點(diǎn)間的線段A1A2叫作雙曲線的實(shí)軸;設(shè)B1(0,-b),B2(0,b)為y軸上的兩個(gè)點(diǎn),則線段B1B2叫做雙曲線的虛軸。實(shí)軸和虛軸的長度分別為|A1A2|=2a,|B1B2|=2b。a叫做雙曲線的實(shí)半軸長,b叫做雙曲線的虛半軸長。①雙曲線只有兩個(gè)頂點(diǎn),而橢圓有四個(gè)頂點(diǎn),不能把雙曲線的虛軸與橢圓的短軸混淆。②雙曲線的焦點(diǎn)總在實(shí)軸上。③實(shí)軸和虛軸等長的雙曲線稱為等軸雙曲線。離心率①雙曲線的焦距與實(shí)軸長的比叫做雙曲線的離心率,用e表示,記作。②因?yàn)閏>a>0,所以雙曲線的離心率。由c2=a2+b2,可得,所以決定雙曲線的開口大小,越大,e也越大,雙曲線開口就越開闊。所以離心率可以用來表示雙曲線開口的大小程度。③等軸雙曲線,所以離心率。漸近線經(jīng)過點(diǎn)A2、A1作y軸的平行線x=±a,經(jīng)過點(diǎn)B1、B2作x軸的平行線y=±b,四條直線圍成一個(gè)矩形(如圖),矩形的兩條對(duì)角線所在直線的方程是。我們把直線叫做雙曲線的漸近線;雙曲線與它的漸近線無限接近,但永不相交。知識(shí)點(diǎn)四:雙曲線兩個(gè)標(biāo)準(zhǔn)方程幾何性質(zhì)的比較標(biāo)準(zhǔn)方程圖形性質(zhì)焦點(diǎn),,焦距范圍,,對(duì)稱性關(guān)于x軸、y軸和原點(diǎn)對(duì)稱頂點(diǎn)軸實(shí)軸長=,虛軸長=離心率漸近線方程知識(shí)點(diǎn)詮釋:雙曲線的焦點(diǎn)總在實(shí)軸上,因此已知標(biāo)準(zhǔn)方程,判斷焦點(diǎn)位置的方法是:看x2、y2的系數(shù),如果x2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在x軸上;如果y2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在y軸上。對(duì)于雙曲線,a不一定大于b,因此不能像橢圓那樣通過比較分母的大小來判定焦點(diǎn)在哪一條坐標(biāo)軸上。知識(shí)點(diǎn)五:雙曲線的漸近線(1)已知雙曲線方程求漸近線方程:若雙曲線方程為,則其漸近線方程為已知雙曲線方程,將雙曲線方程中的“常數(shù)”換成“0”,然后因式分解即得漸近線方程。(2)已知漸近線方程求雙曲線方程:若雙曲線漸近線方程為,則可設(shè)雙曲線方程為,根據(jù)已知條件,求出即可。(3)與雙曲線有公共漸近線的雙曲線與雙曲線有公共漸近線的雙曲線方程可設(shè)為(,焦點(diǎn)在軸上,,焦點(diǎn)在y軸上)(4)等軸雙曲線的漸近線等軸雙曲線的兩條漸近線互相垂直,為,因此等軸雙曲線可設(shè)為.知識(shí)點(diǎn)六:雙曲線中a,b,c的幾何意義及有關(guān)線段的幾何特征:雙曲線標(biāo)準(zhǔn)方程中,a、b、c三個(gè)量的大小與坐標(biāo)系無關(guān),是由雙曲線本身的形狀大小所確定的,分別表示雙曲線的實(shí)半軸長、虛半軸長和半焦距長,均為正數(shù),且三個(gè)量的大小關(guān)系為:c>b>0,c>a>0,且c2=b2+a2。雙曲線,如圖:(1)實(shí)軸長,虛軸長,焦距,(2)離心率:;(3)頂點(diǎn)到焦點(diǎn)的距離:,;第03講拋物線【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:拋物線的定義定義:平面內(nèi)與一個(gè)定點(diǎn)和一條定直線(不經(jīng)過點(diǎn))的距離相等的點(diǎn)的軌跡叫做拋物線,定點(diǎn)叫做拋物線的焦點(diǎn),定直線叫做拋物線的準(zhǔn)線.知識(shí)點(diǎn)詮釋:(1)上述定義可歸納為“一動(dòng)三定”,一個(gè)動(dòng)點(diǎn),一定直線;一個(gè)定值(2)定義中的隱含條件:焦點(diǎn)F不在準(zhǔn)線上,若F在上,拋物線變?yōu)檫^F且垂直與的一條直線.(3)拋物線定義建立了拋物線上的點(diǎn)、焦點(diǎn)、準(zhǔn)線三者之間的距離關(guān)系,在解題時(shí)常與拋物線的定義聯(lián)系起來,將拋物線上的動(dòng)點(diǎn)到焦點(diǎn)的距離與動(dòng)點(diǎn)到準(zhǔn)線的距離互化,通過這種轉(zhuǎn)化使問題簡單化.知識(shí)點(diǎn)二:拋物線的標(biāo)準(zhǔn)方程拋物線標(biāo)準(zhǔn)方程的四種形式:根據(jù)拋物線焦點(diǎn)所在半軸的不同可得拋物線方程的的四種形式,,,。知識(shí)點(diǎn)詮釋:①只有當(dāng)拋物線的頂點(diǎn)是原點(diǎn),對(duì)稱軸是坐標(biāo)軸時(shí),才能得到拋物線的標(biāo)準(zhǔn)方程;②拋物線的焦點(diǎn)在標(biāo)準(zhǔn)方程中一次項(xiàng)對(duì)應(yīng)的坐標(biāo)軸上,且開口方向與一次項(xiàng)的系數(shù)的正負(fù)一致,比如拋物線的一次項(xiàng)為,故其焦點(diǎn)在軸上,且開口向負(fù)方向(向下)③拋物線標(biāo)準(zhǔn)方程中一次項(xiàng)的系數(shù)是焦點(diǎn)的對(duì)應(yīng)坐標(biāo)的4倍.④從方程形式看,求拋物線的標(biāo)準(zhǔn)方程僅需確定一次項(xiàng)系數(shù)。用待定系數(shù)法求拋物線的標(biāo)準(zhǔn)方程時(shí),首先根據(jù)已知條件確定拋物線的標(biāo)準(zhǔn)方程的類型(一般需結(jié)合圖形依據(jù)焦點(diǎn)的位置或開口方向定型),然后求一次項(xiàng)的系數(shù),否則,應(yīng)展開相應(yīng)的討論.⑤在求拋物線方程時(shí),由于標(biāo)準(zhǔn)方程有四種形式,易混淆,可先根據(jù)題目的條件作出草圖,確定方程的形式,再求參數(shù)p,若不能確定是哪一種形式的標(biāo)準(zhǔn)方程,應(yīng)寫出四種形式的標(biāo)準(zhǔn)方程來,不要遺漏某一種情況。知識(shí)點(diǎn)三:拋物線的簡單幾何性質(zhì):拋物線標(biāo)準(zhǔn)方程的幾何性質(zhì)范圍:,,拋物線y2=2px(p>0)在y軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M的坐標(biāo)(x,y)的橫坐標(biāo)滿足不等式x≥0;當(dāng)x的值增大時(shí),|y|也增大,這說明拋物線向右上方和右下方無限延伸。拋物線是無界曲線。對(duì)稱性:關(guān)于x軸對(duì)稱拋物線y2=2px(p>0)關(guān)于x軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸。拋物線只有一條對(duì)稱軸。頂點(diǎn):坐標(biāo)原點(diǎn)拋物線y2=2px(p>0)和它的軸的交點(diǎn)叫做拋物線的頂點(diǎn)。拋物線的頂點(diǎn)坐標(biāo)是(0,0)。拋物線標(biāo)準(zhǔn)方程幾何性質(zhì)的對(duì)比圖形標(biāo)準(zhǔn)方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)頂點(diǎn)O(0,0)范圍x≥0,x≤0,y≥0,y≤0,對(duì)稱軸x軸y軸焦點(diǎn)離心率e=1準(zhǔn)線方程焦半徑知識(shí)點(diǎn)詮釋:(1)與橢圓、雙曲線不同,拋物線只有一個(gè)焦點(diǎn)、一個(gè)頂點(diǎn)、一條對(duì)稱軸,一條準(zhǔn)線;(2)標(biāo)準(zhǔn)方程中的參數(shù)p的幾何意義是指焦點(diǎn)到準(zhǔn)線的距離;p>0恰恰說明定義中的焦點(diǎn)F不在準(zhǔn)線上這一隱含條件;參數(shù)p的幾何意義在解題時(shí)常常用到,特別是具體的標(biāo)準(zhǔn)方程中應(yīng)找到相當(dāng)于p的值,才易于確定焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.第04講直線和圓錐曲線的位置關(guān)系【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:直線與橢圓的位置關(guān)系平面內(nèi)點(diǎn)與橢圓的位置關(guān)系橢圓將平面分成三部分:橢圓上、橢圓內(nèi)、橢圓外,因此,平面上的點(diǎn)與橢圓的位置關(guān)系有三種,任給一點(diǎn)M(x,y),若點(diǎn)M(x,y)在橢圓上,則有;若點(diǎn)M(x,y)在橢圓內(nèi),則有;若點(diǎn)M(x,y)在橢圓外,則有.直線與橢圓的位置關(guān)系將直線的方程與橢圓的方程聯(lián)立成方程組,消元轉(zhuǎn)化為關(guān)于x或y的一元二次方程,其判別式為Δ.①Δ>0直線和橢圓相交直線和橢圓有兩個(gè)交點(diǎn)(或兩個(gè)公共點(diǎn));②Δ=0直線和橢圓相切直線和橢圓有一個(gè)切點(diǎn)(或一個(gè)公共點(diǎn));③Δ<0直線和橢圓相離直線和橢圓無公共點(diǎn).直線與橢圓的相交弦設(shè)直線交橢圓于點(diǎn)兩點(diǎn),則==同理可得這里的求法通常使用韋達(dá)定理,需作以下變形:知識(shí)點(diǎn)三、直線與雙曲線的位置關(guān)系直線與雙曲線的位置關(guān)系將直線的方程與雙曲線的方程聯(lián)立成方程組,消元轉(zhuǎn)化為關(guān)于x或y的一元二次方程,其判別式為Δ.若即,直線與雙曲線漸近線平行,直線與雙曲線相交于一點(diǎn);若即,①Δ>0直線和雙曲線相交直線和雙曲線相交,有兩個(gè)交點(diǎn);②Δ=0直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度企業(yè)項(xiàng)目管理顧問合同3篇
- 2025年度公司員工數(shù)字化轉(zhuǎn)型合伙協(xié)議2篇
- 2025年度電子商務(wù)平臺(tái)勞務(wù)合作合同
- 二零二五年度農(nóng)業(yè)勞務(wù)用工服務(wù)合同范本(含農(nóng)業(yè)綠色防控技術(shù))3篇
- 二零二五年度環(huán)保項(xiàng)目融資抵押合同3篇
- 二零二五年度農(nóng)村林地林業(yè)工程承包合同書
- 2025年度公司個(gè)人借款合同社會(huì)責(zé)任及可持續(xù)發(fā)展協(xié)議3篇
- 二零二五年度養(yǎng)老服務(wù)行業(yè)員工勞動(dòng)合同范本3篇
- 2025年度農(nóng)村自建房拆除與重建一體化服務(wù)協(xié)議合同書
- 二零二五年度文化場(chǎng)館租賃及活動(dòng)組織合同3篇
- 2024年廣東省廣州市黃埔區(qū)中考一模語文試題及答案
- 公路施工表格
- 飯?zhí)脪炜繀f(xié)議合同范本
- 2023-2024學(xué)年遼寧省重點(diǎn)高中沈陽市郊聯(lián)體高二上學(xué)期期末考試生物試題(解析版)
- 借款分期還款合同
- 醫(yī)學(xué)史第三版重點(diǎn)
- 2024版建行借款合同范本
- CQI-8分層過程審核指南(附全套表格)
- 教科版五年級(jí)上冊(cè)科學(xué)期末測(cè)試卷及參考答案(完整版)
- 江西省九江市一中2023-2024學(xué)年下學(xué)期八年級(jí)期中物理試卷
- 物理化學(xué)英語詞匯
評(píng)論
0/150
提交評(píng)論