版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年山東省濱州市十二校高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,則()A. B. C. D.2.已知集合,,則為()A. B. C. D.3.已知函數(shù)在區(qū)間上恰有四個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.4.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時(shí),發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進(jìn)行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實(shí)上,甲、乙、丙三人的陳述都只對(duì)一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路5.已知,若,則等于()A.3 B.4 C.5 D.66.設(shè)集合,,則().A. B.C. D.7.已知函數(shù),給出下列四個(gè)結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對(duì)任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是()A. B. C. D.8.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.9.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2 C.1 D.010.已知函數(shù)的圖像與一條平行于軸的直線有兩個(gè)交點(diǎn),其橫坐標(biāo)分別為,則()A. B. C. D.11.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)12.已知在中,角的對(duì)邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),則的值為__________.14.一個(gè)房間的地面是由12個(gè)正方形所組成,如圖所示.今想用長(zhǎng)方形瓷磚鋪滿地面,已知每一塊長(zhǎng)方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.15.如圖,在直四棱柱中,底面是平行四邊形,點(diǎn)是棱的中點(diǎn),點(diǎn)是棱靠近的三等分點(diǎn),且三棱錐的體積為2,則四棱柱的體積為______.16.工人在安裝一個(gè)正六邊形零件時(shí),需要固定如圖所示的六個(gè)位置的螺栓.若按一定順序?qū)⒚總€(gè)螺栓固定緊,但不能連續(xù)固定相鄰的2個(gè)螺栓.則不同的固定螺栓方式的種數(shù)是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,右焦點(diǎn)為拋物線的焦點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)為坐標(biāo)原點(diǎn),過作兩條射線,分別交橢圓于、兩點(diǎn),若、斜率之積為,求證:的面積為定值.18.(12分)已知正實(shí)數(shù)滿足.(1)求的最小值.(2)證明:19.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),求函數(shù)在上最小值.20.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).21.(12分)2019年安慶市在大力推進(jìn)城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識(shí).有關(guān)部門為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次“垃圾分類知識(shí)"的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:(i)得分不低于可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于則只有1次:(ii)每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:贈(zèng)送話費(fèi)(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列.附:,若,則,.22.(10分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn),是上異于,的點(diǎn),.(1)證明:平面平面;(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點(diǎn)睛】本題主要考查了一次不等式的解集以及集合的交集運(yùn)算,屬于基礎(chǔ)題.2、C【解析】
分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧?,,所以故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.3、A【解析】
函數(shù)的零點(diǎn)就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個(gè)數(shù)得出的范圍.【詳解】由題意得有四個(gè)大于的不等實(shí)根,記,則上述方程轉(zhuǎn)化為,即,所以或.因?yàn)?,?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,最小值為.因?yàn)椋杂袃蓚€(gè)符合條件的實(shí)數(shù)解,故在區(qū)間上恰有四個(gè)不相等的零點(diǎn),需且.故選:A.【點(diǎn)睛】本題考查復(fù)合函數(shù)的零點(diǎn).考查轉(zhuǎn)化與化歸思想,函數(shù)零點(diǎn)轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.4、D【解析】
甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個(gè)是正確另外兩個(gè)錯(cuò)誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯(cuò)誤,又三人的陳述都只對(duì)一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯(cuò)誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯(cuò)誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點(diǎn)睛】本題主要考查了判斷與推理的問題,重點(diǎn)是找到三人中都提到的內(nèi)容進(jìn)行分類討論,屬于基礎(chǔ)題型.5、C【解析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)?,所以有,得,故選:C.【點(diǎn)睛】該題考查的是有關(guān)向量的問題,涉及到的知識(shí)點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.6、D【解析】
根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項(xiàng)即可得到答案.【詳解】根據(jù)題意,則故選:D【點(diǎn)睛】此題考查集合的交并集運(yùn)算,屬于簡(jiǎn)單題目,7、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯(cuò)誤;當(dāng)時(shí),,單調(diào)遞減,故③正確;若對(duì)任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.8、A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.9、C【解析】
集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立方程組求得方程組解的個(gè)數(shù),即為交集中元素的個(gè)數(shù).【詳解】由題可知:集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立與,可得,整理得,即,當(dāng)時(shí),,不滿足題意;故方程組有唯一的解.故.故選:C.【點(diǎn)睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.10、A【解析】
畫出函數(shù)的圖像,函數(shù)對(duì)稱軸方程為,由圖可得與關(guān)于對(duì)稱,即得解.【詳解】函數(shù)的圖像如圖,對(duì)稱軸方程為,,又,由圖可得與關(guān)于對(duì)稱,故選:A【點(diǎn)睛】本題考查了正弦型函數(shù)的對(duì)稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、C【解析】
根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.12、C【解析】
求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因?yàn)槎x在上的奇函數(shù),則,則,又因?yàn)?所以,,所以.故答案為:【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn),三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識(shí)的應(yīng)用能力和計(jì)算能力,是基礎(chǔ)題.14、11【解析】
將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類,在其中會(huì)有相同元素的排列問題,需用到“縮倍法”.采用分類計(jì)數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個(gè):,3個(gè),2個(gè):,1個(gè),4個(gè):,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個(gè):,1個(gè),2個(gè):,綜上,一共有(種).故答案為:11.【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15、12【解析】
由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為?!军c(diǎn)睛】本題主要考查了棱柱與棱錐的體積的計(jì)算問題,其中解答中正確認(rèn)識(shí)幾何體的結(jié)構(gòu)特征,合理、恰當(dāng)?shù)乇硎局彼睦庵忮F的體積是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,以及空間想象能力,屬于中檔試題。16、60【解析】分析:首先將選定第一個(gè)釘,總共有6種方法,假設(shè)選定1號(hào),之后分析第二步,第三步等,按照分類加法計(jì)數(shù)原理,可以求得共有10種方法,利用分步乘法計(jì)數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個(gè)可以從6個(gè)釘里任意選一個(gè),共有6種選擇方法,并且是機(jī)會(huì)相等的,若第一個(gè)選1號(hào)釘?shù)臅r(shí)候,第二個(gè)可以選3,4,5號(hào)釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點(diǎn)睛:該題考查的是有關(guān)分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,在解題的過程中,需要逐個(gè)的將對(duì)應(yīng)的過程寫出來,所以利用列舉法將對(duì)應(yīng)的結(jié)果列出,而對(duì)于第一個(gè)選哪個(gè)是機(jī)會(huì)均等的,從而用乘法運(yùn)算得到結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當(dāng)與軸垂直時(shí),設(shè)直線的方程為:,與橢圓聯(lián)立求得的坐標(biāo),通過、斜率之積為列方程可得的值,進(jìn)而可得的面積;當(dāng)與軸不垂直時(shí),設(shè),,的方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理和、斜率之積為可得,再利用弦長(zhǎng)公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點(diǎn)為,,,,,,橢圓方程為;(2)(ⅰ)當(dāng)與軸垂直時(shí),設(shè)直線的方程為:代入得:,,,解得:,;(ⅱ)當(dāng)與軸不垂直時(shí),設(shè),,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點(diǎn)睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關(guān)系,考查韋達(dá)定理的應(yīng)用,考查了學(xué)生的計(jì)算能力,是中檔題.18、(1);(2)見解析【解析】
(1)利用乘“1”法,結(jié)合基本不等式求得結(jié)果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因?yàn)椋砸驗(yàn)?,所以(?dāng)且僅當(dāng),即時(shí)等號(hào)成立),所以(2)證明:因?yàn)?,所以故(?dāng)且僅當(dāng)時(shí),等號(hào)成立)【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.19、(Ⅰ)見解析;(Ⅱ)當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最小值是【解析】
(1)求出導(dǎo)函數(shù),并且解出它的零點(diǎn)x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時(shí),函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時(shí),函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域
為.
因?yàn)椋?,可得?/p>
當(dāng)時(shí),;當(dāng)時(shí),,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時(shí),函數(shù)在區(qū)間上是減函數(shù),
的最小值是當(dāng),即時(shí),函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時(shí),函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當(dāng)時(shí),的最小值是;
當(dāng)時(shí),的最小值為綜上所述,結(jié)論為當(dāng)時(shí),函數(shù)的最小值是;
當(dāng)時(shí),函數(shù)的最小值是.【點(diǎn)睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個(gè)極值點(diǎn),則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點(diǎn)值的函數(shù)值與極值的大小20、(1)(2)三個(gè)零點(diǎn)【解析】
(1)由題意知恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),求得函數(shù)最值,進(jìn)而得到結(jié)果;(2)當(dāng)時(shí)先對(duì)函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性可得到函數(shù)有兩個(gè)極值點(diǎn),再證,.【詳解】(1)由得,由題意知恒成立,即,設(shè),,時(shí),遞減,時(shí),,遞增;故,即,故的取值范圍是.(2)當(dāng)時(shí),單調(diào),無極值;當(dāng)時(shí),,一方面,,且在遞減,所以在區(qū)間有一個(gè)零點(diǎn).另一方面,,設(shè),則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個(gè)零點(diǎn).因此,當(dāng)時(shí)在和各有一個(gè)零點(diǎn),將這兩個(gè)零點(diǎn)記為,,當(dāng)時(shí),即;當(dāng)時(shí),即;當(dāng)時(shí),即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn).下面證明:,由得,即,由得,令,則,①當(dāng)時(shí),遞減,則,而,故;②當(dāng)時(shí),遞減,則,而,故;一方面,因?yàn)椋?,且在遞增,所以在上有一個(gè)零點(diǎn),即在上有一個(gè)零點(diǎn).另一方面,根據(jù)得,則有:,又,且在遞增,故在上有一個(gè)零點(diǎn),故在上有一個(gè)零點(diǎn).又,故有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),導(dǎo)數(shù)的綜合應(yīng)用.在研究函數(shù)零點(diǎn)時(shí),有一種方法是把函數(shù)的零點(diǎn)轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點(diǎn),特別是利用分離參數(shù)法轉(zhuǎn)化為動(dòng)直線與函數(shù)圖象交點(diǎn)問題,這樣就可利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性與極值,從而得出函數(shù)的變化趨勢(shì),得出結(jié)論.21、(1)(2)詳見解析【解析】
(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點(diǎn)橫坐標(biāo)之和,再利用正態(tài)分布
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年基于大數(shù)據(jù)分析的云服務(wù)器維保服務(wù)合同
- 公司離職解約合同范例
- 書供貨合同范例
- 鹵菜原料采購(gòu)合同范例
- 修建舞臺(tái)施工合同范例
- 親子合作合同范例
- 親屬股贈(zèng)與合同范例
- 喪葬大棚租賃合同范例
- 中介和小中介合同范例
- 分賬合同范例
- 山東省日照地區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期中考試數(shù)學(xué)試題(含答案)
- 《地產(chǎn)公司圖紙管理辦法》的通知
- 中華民族共同體概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 世界慢阻肺日
- 2024年資格考試-CPSM認(rèn)證考試近5年真題附答案
- 混料機(jī)的安全操作規(guī)程有哪些(8篇)
- 期中 (試題) -2024-2025學(xué)年譯林版(三起)英語六年級(jí)上冊(cè)
- 2024秋期國(guó)家開放大學(xué)《財(cái)務(wù)報(bào)表分析》一平臺(tái)在線形考(作業(yè)一至五)試題及答案
- 國(guó)家基本醫(yī)療保險(xiǎn)、工傷保險(xiǎn)和生育保險(xiǎn)藥品目錄(2023年)
- 城市公益公墓區(qū)建設(shè)方案
- 第七單元測(cè)試卷-2024-2025學(xué)年語文三年級(jí)上冊(cè)統(tǒng)編版
評(píng)論
0/150
提交評(píng)論