版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省許昌平頂山兩市2024年高三最后一模數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)在區(qū)間上恰有四個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.2.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.3.已知集合,則的值域?yàn)椋ǎ〢. B. C. D.4.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿(mǎn)足,則等于()A.2 B. C. D.5.已知拋物線(xiàn)C:,過(guò)焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)C交于A(yíng),B兩點(diǎn)(A在x軸上方),且滿(mǎn)足,則直線(xiàn)l的斜率為()A.1 B.C.2 D.36.復(fù)數(shù)().A. B. C. D.7.已知直三棱柱中,,,,則異面直線(xiàn)與所成的角的正弦值為().A. B. C. D.8.曲線(xiàn)上任意一點(diǎn)處的切線(xiàn)斜率的最小值為()A.3 B.2 C. D.19.函數(shù)的大致圖像為()A. B.C. D.10.劉徽是我國(guó)魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類(lèi),因就其余不移動(dòng)也.合成弦方之冪,開(kāi)方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.11.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個(gè)新數(shù)列,則()A.1194 B.1695 C.311 D.109512.已知定義在R上的函數(shù)(m為實(shí)數(shù))為偶函數(shù),記,,則a,b,c的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.棱長(zhǎng)為的正四面體與正三棱錐的底面重合,若由它們構(gòu)成的多面體的頂點(diǎn)均在一球的球面上,則正三棱錐的內(nèi)切球半徑為_(kāi)_____.14.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.15.曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)與軸及直線(xiàn)=所圍成的三角形面積為,則實(shí)數(shù)=____。16.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線(xiàn)方程為.(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時(shí),.18.(12分)已知,求的最小值.19.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù),將曲線(xiàn)經(jīng)過(guò)伸縮變換后得到曲線(xiàn).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為.(1)說(shuō)明曲線(xiàn)是哪一種曲線(xiàn),并將曲線(xiàn)的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線(xiàn)上的任意一點(diǎn),又直線(xiàn)上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.20.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線(xiàn)段上的動(dòng)點(diǎn).(1)求證:;(2)若直線(xiàn)與平面所成角為,求二面角的正切值.21.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.22.(10分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
函數(shù)的零點(diǎn)就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個(gè)數(shù)得出的范圍.【詳解】由題意得有四個(gè)大于的不等實(shí)根,記,則上述方程轉(zhuǎn)化為,即,所以或.因?yàn)椋?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,最小值為.因?yàn)?,所以有兩個(gè)符合條件的實(shí)數(shù)解,故在區(qū)間上恰有四個(gè)不相等的零點(diǎn),需且.故選:A.【點(diǎn)睛】本題考查復(fù)合函數(shù)的零點(diǎn).考查轉(zhuǎn)化與化歸思想,函數(shù)零點(diǎn)轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問(wèn)題解決問(wèn)題的能力.2、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.3、A【解析】
先求出集合,化簡(jiǎn)=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域?yàn)楣蔬xA【點(diǎn)睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題4、D【解析】
選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線(xiàn)向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.5、B【解析】
設(shè)直線(xiàn)的方程為代入拋物線(xiàn)方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡(jiǎn)求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線(xiàn)l的斜率存在且不為0,設(shè)為,則直線(xiàn)l的方程為.與拋物線(xiàn)方程聯(lián)立得,所以,.因?yàn)?,所以,得,所以,即,,所?故選:B.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計(jì)算能力,屬于中檔題.6、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類(lèi)似于多項(xiàng)式的合并同類(lèi)項(xiàng),乘法法則類(lèi)似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫(xiě)成分式的形式,再將分母實(shí)數(shù)化.7、C【解析】
設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線(xiàn)定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫(huà)出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點(diǎn)睛】此題考查異面直線(xiàn)夾角,關(guān)鍵點(diǎn)通過(guò)平移將異面直線(xiàn)夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.8、A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線(xiàn)斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線(xiàn)斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線(xiàn)斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.9、D【解析】
通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)椋?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.10、C【解析】
首先明確這是一個(gè)幾何概型面積類(lèi)型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.11、D【解析】
確定中前35項(xiàng)里兩個(gè)數(shù)列中的項(xiàng)數(shù),數(shù)列中第35項(xiàng)為70,這時(shí)可通過(guò)比較確定中有多少項(xiàng)可以插入這35項(xiàng)里面即可得,然后可求和.【詳解】時(shí),,所以數(shù)列的前35項(xiàng)和中,有三項(xiàng)3,9,27,有32項(xiàng),所以.故選:D.【點(diǎn)睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項(xiàng)和公式是解題基礎(chǔ).解題關(guān)鍵是確定數(shù)列的前35項(xiàng)中有多少項(xiàng)是中的,又有多少項(xiàng)是中的.12、B【解析】
根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調(diào)性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調(diào)遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對(duì)于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大?。?、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由棱長(zhǎng)為的正四面體求出外接球的半徑,進(jìn)而求出正三棱錐的高及側(cè)棱長(zhǎng),可得正三棱錐的三條側(cè)棱兩兩相互垂直,進(jìn)而求出體積與表面積,設(shè)內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設(shè)三角形的外接圓的半徑為,則,解得,設(shè)外接球的半徑為,則可得,即,解得,設(shè)正三棱錐的高為,因?yàn)?,所以,所以,而,所以正三棱錐的三條側(cè)棱兩兩相互垂直,所以,設(shè)內(nèi)切球的半徑為,,即解得:.故答案為:.【點(diǎn)睛】本題考查多面體與球的內(nèi)切和外接問(wèn)題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意借助幾何體的直觀(guān)圖進(jìn)行分析.14、【解析】
先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類(lèi)討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.15、或1【解析】
利用導(dǎo)數(shù)的幾何意義,可得切線(xiàn)的斜率,以及切線(xiàn)方程,求得切線(xiàn)與軸和的交點(diǎn),由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線(xiàn)的斜率為3,切線(xiàn)方程為,可得,可得切線(xiàn)與軸的交點(diǎn)為,,切線(xiàn)與的交點(diǎn)為,可得,解得或?!军c(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線(xiàn)方程,以及直線(xiàn)方程的運(yùn)用,三角形的面積求法。16、【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見(jiàn)解析.【解析】
試題分析:(1)由題得,根據(jù)曲線(xiàn)在點(diǎn)處的切線(xiàn)方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域?yàn)?,,因?yàn)榍€(xiàn)在點(diǎn)處的切線(xiàn)方程為,所以解得.令,得,當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設(shè),則要證,等價(jià)于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.18、【解析】
討論和的情況,然后再分對(duì)稱(chēng)軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時(shí),,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時(shí),函數(shù)的圖象思維對(duì)稱(chēng)軸方程為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為綜上,【點(diǎn)睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題。19、(1)曲線(xiàn)為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解析】
(1)求得曲線(xiàn)伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線(xiàn),并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線(xiàn)的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線(xiàn)的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線(xiàn)的參數(shù)方程,求得曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線(xiàn)表示的曲線(xiàn),利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線(xiàn)的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【詳解】(1)因?yàn)榍€(xiàn)的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線(xiàn)的參數(shù)方程所以的普通方程為.所以曲線(xiàn)為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)①點(diǎn)的極角為,代入直線(xiàn)的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線(xiàn)的普通方程為,又點(diǎn)的極角為銳角,所以,所以,所以點(diǎn)的極角為.②解法1:直線(xiàn)的普通方程為.曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離.當(dāng),即()時(shí),取到最小值為.當(dāng),即()時(shí),取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線(xiàn)的普通方程為.因?yàn)閳A的半徑為2,且圓心到直線(xiàn)的距離,因?yàn)?,所以圓與直線(xiàn)相離.所以圓上的點(diǎn)到直線(xiàn)的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點(diǎn)睛】本小題考查坐標(biāo)變換,極徑與極角;直線(xiàn),圓的極坐標(biāo)方程,圓的參數(shù)方程,直線(xiàn)的極坐標(biāo)方程與普通方程,點(diǎn)到直線(xiàn)的距離等.考查數(shù)學(xué)運(yùn)算能力,包括運(yùn)算原理的理解與應(yīng)用、運(yùn)算方法的選擇與優(yōu)化、運(yùn)算結(jié)果的檢驗(yàn)與改進(jìn)等.也兼考了數(shù)學(xué)抽象素養(yǎng)、邏輯推理、數(shù)學(xué)運(yùn)算、直觀(guān)想象等核心素養(yǎng).20、(1)見(jiàn)解析;(2)【解析】
(1)可證面,從而可得.(2)可證點(diǎn)為線(xiàn)段的三等分點(diǎn),再過(guò)作于,過(guò)作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來(lái)計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,而平面,故,又因?yàn)椋裕瑒t,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線(xiàn)與平面所成的角,即.因?yàn)?,所以,所以,所以,即點(diǎn)為線(xiàn)段的三等分點(diǎn).解法一:過(guò)作于,則平面,所以,過(guò)作,垂足為,則為二面角的平面角,因?yàn)?,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè)點(diǎn),由得:,即,,,點(diǎn),平面的一個(gè)法向量,又,,設(shè)平面的一個(gè)法向量為,則,令,則平面的一個(gè)法向量為.設(shè)二面角的平面角為,則,即,所以二面角的正切值為.【點(diǎn)睛】線(xiàn)線(xiàn)垂直的判定可由線(xiàn)面垂直得到,也可以由兩條線(xiàn)所成的角為得到,而線(xiàn)面垂直又可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年地方政府投資建設(shè)項(xiàng)目承包合同
- 實(shí)驗(yàn)室消防改造合同
- 智能家居系統(tǒng)安裝合同
- 皮革制品公司員工停薪留職
- 婚紗攝影積分優(yōu)惠活動(dòng)
- 商業(yè)區(qū)加油站施工合同
- 社會(huì)電力施工合同范本
- 2024醫(yī)療信息科技公司與醫(yī)院就智能病房系統(tǒng)部署的合同
- 燃料消耗指標(biāo)制定
- 城市照明安全系統(tǒng)安裝合同
- 全國(guó)人工智能應(yīng)用技術(shù)技能大賽理論考試題庫(kù)大全-下(多選、判斷題匯總)
- 園林植物花卉育種學(xué)課件第4章-選擇育種
- DB31T 1249-2020 醫(yī)療廢物衛(wèi)生管理規(guī)范
- 物業(yè)管理員(三級(jí))職業(yè)技能鑒定考試題庫(kù)(含答案)
- 生成式對(duì)抗網(wǎng)絡(luò)課件
- 采購(gòu)項(xiàng)目技術(shù)、服務(wù)和其他要求
- 蘇教版數(shù)學(xué)二年級(jí)上冊(cè)《觀(guān)察物體》課件(合肥市公開(kāi)課)
- 廠(chǎng)房壓縮空氣管道安裝工程施工方案設(shè)計(jì)
- C#50個(gè)經(jīng)典小程序(新手必備)
- 通信工程專(zhuān)業(yè)英語(yǔ)論文
- 智能化系統(tǒng)安裝調(diào)試測(cè)試驗(yàn)收的方案說(shuō)明
評(píng)論
0/150
提交評(píng)論