![考向04 基本不等式及應(yīng)用(重點(diǎn))-備戰(zhàn)2022年高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)微專題(新高考地區(qū)專用)_第1頁](http://file4.renrendoc.com/view3/M03/2F/23/wKhkFmYycWuADQxXAAGp07fJXBA807.jpg)
![考向04 基本不等式及應(yīng)用(重點(diǎn))-備戰(zhàn)2022年高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)微專題(新高考地區(qū)專用)_第2頁](http://file4.renrendoc.com/view3/M03/2F/23/wKhkFmYycWuADQxXAAGp07fJXBA8072.jpg)
![考向04 基本不等式及應(yīng)用(重點(diǎn))-備戰(zhàn)2022年高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)微專題(新高考地區(qū)專用)_第3頁](http://file4.renrendoc.com/view3/M03/2F/23/wKhkFmYycWuADQxXAAGp07fJXBA8073.jpg)
![考向04 基本不等式及應(yīng)用(重點(diǎn))-備戰(zhàn)2022年高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)微專題(新高考地區(qū)專用)_第4頁](http://file4.renrendoc.com/view3/M03/2F/23/wKhkFmYycWuADQxXAAGp07fJXBA8074.jpg)
![考向04 基本不等式及應(yīng)用(重點(diǎn))-備戰(zhàn)2022年高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)微專題(新高考地區(qū)專用)_第5頁](http://file4.renrendoc.com/view3/M03/2F/23/wKhkFmYycWuADQxXAAGp07fJXBA8075.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
考向04基本不等式及應(yīng)用(2021·全國(guó)高考真題)已知,是橢圓:的兩個(gè)焦點(diǎn),點(diǎn)在上,則的最大值為()A.13 B.12 C.9 D.6【答案】C【分析】本題通過利用橢圓定義得到,借助基本不等式即可得到答案.【詳解】由題,,則,所以(當(dāng)且僅當(dāng)時(shí),等號(hào)成立).故選:C.【點(diǎn)睛】橢圓上的點(diǎn)與橢圓的兩焦點(diǎn)的距離問題,常常從橢圓的定義入手,注意基本不等式得靈活運(yùn)用,或者記住定理:兩正數(shù),和一定相等時(shí)及最大,積一定,相等時(shí)和最小,也可快速求解.1.利用均值不等式求最值遵循的原則:“一正二定三等”(1)正:使用均值不等式所涉及的項(xiàng)必須為正數(shù),如果有負(fù)數(shù)則考慮變形或使用其它方法(2)定:使用均值不等式求最值時(shí),變形后的一側(cè)不能還含有核心變量.(3)等:若能利用均值不等式求得最值,則要保證等號(hào)成立,要注意以下兩點(diǎn):①若求最值的過程中多次使用均值不等式,則均值不等式等號(hào)成立的條件必須能夠同時(shí)成立(彼此不沖突)②若涉及的變量有初始范圍要求,則使用均值不等式后要解出等號(hào)成立時(shí)變量的值,并驗(yàn)證是否符合初始范圍.注意:形如的函數(shù)求最值時(shí),首先考慮用基本不等式,若等號(hào)取不到,再利用該函數(shù)的單調(diào)性求解.2.通過拼湊法利用基本不等式求最值的策略拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵,利用拼湊法求解最值應(yīng)注意以下幾個(gè)方面的問題:(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo);(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.3.利用基本不等式證明不等式是綜合法證明不等式的一種情況,要從整體上把握運(yùn)用基本不等式,對(duì)不滿足使用基本不等式條件的可通過“變形”來轉(zhuǎn)換,常見的變形技巧有:拆項(xiàng),并項(xiàng),也可乘上一個(gè)數(shù)或加上一個(gè)數(shù),“1”的代換法等.1.重要不等式當(dāng)a、b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.2.基本不等式當(dāng)a>0,b>0時(shí)有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.3.基本不等式與最值已知x、y都是正數(shù).(1)若x+y=s(和為定值),則當(dāng)x=y(tǒng)時(shí),積xy取得最大值.(2)若xy=p(積為定值),則當(dāng)x=y(tǒng)時(shí),和x+y取得最小值.【知識(shí)拓展】常用推論:(1)()(2)(,);(3)1.(2021·江蘇南通市·高三其他模擬)已知,,且,則下列結(jié)論中正確的是()A.有最小值4 B.有最小值C.有最大值 D.有最大值22.(2021·山東煙臺(tái)市·高三其他模擬)(多選題)下列命題正確的是()A.若,,則B.若,,,則C.若,則D.若,,,則的最小值為33.(2020·石家莊市藁城區(qū)第一中學(xué)高三其他模擬(文))若直線(,)被圓截得弦長(zhǎng)為,則的最小值是()A. B. C. D.4.(2020·安徽高三其他模擬(文))在ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若(4b-c)cosA=acosC,且,則ABC的周長(zhǎng)的取值范圍___________.1.(2021·北京高三二模)某公司購買一批機(jī)器投入生產(chǎn),若每臺(tái)機(jī)器生產(chǎn)的產(chǎn)品可獲得的總利潤(rùn)s(萬元)與機(jī)器運(yùn)轉(zhuǎn)時(shí)間t(年數(shù),)的關(guān)系為,要使年平均利潤(rùn)最大,則每臺(tái)機(jī)器運(yùn)轉(zhuǎn)的年數(shù)t為()A.5 B.6 C.7 D.82.(2021·重慶高三三模)(多選題)已知,為正實(shí)數(shù),且,則()A.的最大值為2 B.的最小值為4C.的最小值為3 D.的最小值為3.(2021·普寧市第二中學(xué)高三其他模擬)(多選題)已知,則下列選項(xiàng)一定正確的是()A. B.的最大值為C. D.4.(2021·全國(guó)高三其他模擬)(多選題)已知,,則下列說法正確的是()A.最小值為B.若,則的最小值為C.若,則的最小值為D.若,則的最小值為5.(2021·江蘇揚(yáng)州市·揚(yáng)州中學(xué)高三其他模擬)已知正實(shí)數(shù),滿足,則的最大值等于______.6.(2021·河北衡水市·高三其他模擬)如圖,在平行四邊形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F為線段BD上的一動(dòng)點(diǎn),若,則的最大值為___________.7.(2021·天津市武清區(qū)楊村第一中學(xué)高三其他模擬)已知都為正實(shí)數(shù),則的最小值為___________.8.(2021·黑龍江大慶市·鐵人中學(xué)高三三模(理))《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架,其中卷第九勾股中記載:“今有邑,東西七里,南北九里,各中開門.出東門一十五里有木.問出南門幾何步而見木?”其算法為:東門南到城角的步數(shù),乘南門東到城角的步數(shù),乘積作被除數(shù),以樹距離東門的步數(shù)作除數(shù),被除數(shù)除以除數(shù)得結(jié)果,即出南門里見到樹,則.若一小城,如圖所示,出東門步有樹,出南門步能見到此樹,則該小城的周長(zhǎng)的最小值為(注:里步)________里.9.(2021·浙江高三其他模擬)已知正實(shí)數(shù)滿足,則的最小值為_______;的最小值為__.10.(2021·海南高三其他模擬)若,,且,則的最小值是___________,當(dāng)且僅當(dāng)___________時(shí),取得最值.11.(2021·河北唐山市·唐山一中高三其他模擬)某小區(qū)要建一座八邊形的休閑公園,它的主體造型的平面圖是由兩個(gè)相同的矩形和構(gòu)成的面積為的十字型地域,計(jì)劃在正方形上建一座花壇,造價(jià)為4200元,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210元,再在四個(gè)空角(圖中四個(gè)三角形)上鋪草坪,造價(jià)為80元.設(shè)總造價(jià)為(單位:元),長(zhǎng)為(單位:).的最小值是___________,此時(shí)的值是___________.1.(2021·浙江高考真題)已知是互不相同的銳角,則在三個(gè)值中,大于的個(gè)數(shù)的最大值是()A.0 B.1 C.2 D.33.(2021·全國(guó)高考真題(文))下列函數(shù)中最小值為4的是()A. B.C. D.3.(2020·全國(guó)高考真題(理))設(shè)為坐標(biāo)原點(diǎn),直線與雙曲線的兩條漸近線分別交于兩點(diǎn),若的面積為8,則的焦距的最小值為()A.4 B.8 C.16 D.324.(2020·天津高考真題)已知,且,則的最小值為_________.5.(2020·江蘇高考真題)已知,則的最小值是_______.6.(2019·上海高考真題)如圖,已知正方形,其中,函數(shù)交于點(diǎn),函數(shù)交于點(diǎn),當(dāng)最小時(shí),則的值為_______7.(2019·天津高考真題(理))設(shè),則的最小值為______.8.(2020·全國(guó)高考真題(文))設(shè)a,b,cR,a+b+c=0,abc=1.(1)證明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,證明:max{a,b,c}≥.1.【答案】A【分析】根據(jù)已知,結(jié)合基本不等式分別判斷選項(xiàng)即可,但需注意取最值時(shí)的條件.【詳解】對(duì)于選項(xiàng)A,,當(dāng)且僅當(dāng)時(shí)取等號(hào),故A正確;對(duì)于選項(xiàng)B,,當(dāng)且僅當(dāng)時(shí)取等號(hào),故B錯(cuò)誤;對(duì)于選項(xiàng)C,,當(dāng)且僅當(dāng)時(shí)取等號(hào),故C錯(cuò)誤;對(duì)于選項(xiàng)D,,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故D錯(cuò)誤.故選:A.【點(diǎn)睛】在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.2.【答案】ACD【分析】對(duì)選項(xiàng)A,利用不等式性質(zhì)即可判斷A正確;對(duì)選項(xiàng)B,利用特值法即可判斷B錯(cuò)誤;對(duì)選項(xiàng)C,利用基本不等式性質(zhì)求解即可;對(duì)選項(xiàng)D,首先根據(jù)題意得到,從而得到,再展開利用基本不等式求解即可.【詳解】對(duì)選項(xiàng)A,因?yàn)?,所以,又因?yàn)椋?,故A正確;對(duì)選項(xiàng)B,因?yàn)?,,,設(shè),,,則,,,故B錯(cuò)誤;對(duì)選項(xiàng)C,因?yàn)?,所以,故C正確;對(duì)選項(xiàng)D,因?yàn)椋?,所以,?dāng)且僅當(dāng),即,時(shí),取等號(hào).故D正確.故選:ACD3.【答案】A【分析】根據(jù)直線被圓截得的弦長(zhǎng)為4,以及圓的半徑為2,可知直線過圓心,即,,根據(jù)此特點(diǎn),可選擇基本不等式求出最小值.【詳解】直線被圓截得的弦長(zhǎng)為4,圓的半徑為,圓心為直線過圓心,故,即,,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,最小值為9.故選:A【點(diǎn)睛】理解題意,直線與圓相交后弦心距、半弦長(zhǎng)、半徑構(gòu)成直角三角形,以及由,求的最小值聯(lián)想用基本不等式求最值.4.【答案】【分析】先根據(jù)正弦定理將已知條件邊化角,求出,然后利用余弦定理及均值不等式即可求解.【詳解】解:,由正弦定理得,即,又,,所以,由余弦定理得,即,又(b=c時(shí)等號(hào)成立),所以b+c,,,所以ABC的周長(zhǎng)的取值范圍為,故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用余弦定理得邊后,結(jié)合均值不等式建立不等關(guān)系,從而求出b+c,最后根據(jù)三角形任意兩邊之和大于第三邊求解.1.【答案】D【分析】根據(jù)題意求出年平均利潤(rùn)函數(shù)。利用均值不等式求最值.【詳解】因?yàn)槊颗_(tái)機(jī)器生產(chǎn)的產(chǎn)品可獲得的總利潤(rùn)s(萬元)與機(jī)器運(yùn)轉(zhuǎn)時(shí)間t(年數(shù),)的關(guān)系為,所以年平均利潤(rùn)當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即年平均利潤(rùn)最大,則每臺(tái)機(jī)器運(yùn)轉(zhuǎn)的年數(shù)t為8,故選:D2.【答案】ABD【分析】對(duì)條件進(jìn)行變形,利用不等式的基本性質(zhì)對(duì)選項(xiàng)一一分析即可.【詳解】解:因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),解得,即,故的最大值為2,A正確;由得,所以,當(dāng)且僅當(dāng),即時(shí)取等號(hào),此時(shí)取得最小值4,B正確;,當(dāng)且僅當(dāng),即時(shí)取等號(hào),C錯(cuò)誤;,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)取得最小值,D正確.故選:ABD.3.【答案】BD【分析】依題意得出的取值范圍,由此可得的范圍,即可判斷A的正誤;利用基本不等式可判斷B、C的正誤;根據(jù)基本不等式及二次函數(shù)知識(shí)即可判斷D的正誤.【詳解】因?yàn)?,所以,所?對(duì)于A:由可得,所以,故A錯(cuò)誤;對(duì)于B:,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以的最大值為,故B正確;對(duì)于C:因?yàn)?,所以?dāng)且僅當(dāng),即時(shí)等號(hào)成立,故C錯(cuò)誤;對(duì)于D:因?yàn)椋?,所以,?dāng)且僅當(dāng),即時(shí)等號(hào)成立,因?yàn)?,所以,?dāng)時(shí)取最大值,此時(shí),此時(shí)兩次取等號(hào)條件不一致,故,故D正確.故選:BD.【點(diǎn)睛】方法點(diǎn)睛:在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.4.【答案】BC【分析】選項(xiàng)A.設(shè),求出導(dǎo)數(shù),得出單調(diào)性,可判斷;選項(xiàng)B.先將展開先利用均值不等式放縮再配方,然后利用均值不等式可判斷;選項(xiàng)C由得,代入由均值不等式可判斷;選項(xiàng)D.由兩邊同時(shí)乘以結(jié)合均值不等式可得答案.【詳解】對(duì)于A,設(shè),則,當(dāng)時(shí),;當(dāng)時(shí),,故,而不為定值,故A錯(cuò)誤.對(duì)于B,,當(dāng)且僅當(dāng)即時(shí)取等號(hào),故B正確.對(duì)于C,由得,由,所以,,當(dāng)且僅當(dāng)時(shí)取等號(hào),故C正確.對(duì)于D,由得,則,解得,故D錯(cuò)誤.故選:BC.【點(diǎn)睛】易錯(cuò)點(diǎn)睛:利用基本不等式求最值時(shí),要注意其必須滿足的三個(gè)條件:(1)“一正二定三相等”“一正”就是各項(xiàng)必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項(xiàng)之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時(shí),必須驗(yàn)證等號(hào)成立的條件,若不能取等號(hào)則這個(gè)定值就不是所求的最值,這也是最容易發(fā)生錯(cuò)誤的地方,這時(shí)改用勾型函數(shù)的單調(diào)性求最值.5.【答案】1【分析】由題意利用基本不等式可得,由此求得的最大值.【詳解】正實(shí)數(shù),滿足,即,∴(當(dāng)且僅當(dāng)時(shí),取等號(hào)),∴,即,則的最大值等于1,故答案為:1.6.【答案】【分析】設(shè)BD與AE的交點(diǎn)為O,結(jié)合比例關(guān)系可求出,得出,則可代換為,結(jié)合三點(diǎn)共線性質(zhì)得,原式代換為,再結(jié)合基本不等式即可求解【詳解】如圖,設(shè)BD與AE的交點(diǎn)為O,則由,得,所以,所以.由點(diǎn)O,F(xiàn),B共線,得,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),即的最大值為故答案為:【點(diǎn)睛】本題考查平面向量三點(diǎn)共線性質(zhì)的應(yīng)用,基本不等式求最值,屬于中檔題7.【答案】【分析】化簡(jiǎn),由基本不等式得,再代入原式得,判斷相等條件后即可得最小值.【詳解】,因?yàn)槎紴檎龑?shí)數(shù),,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,綜上所述,當(dāng)時(shí),取最小值為.故答案為:【點(diǎn)睛】解答本題的關(guān)鍵在于分別利用兩次基本不等式,根據(jù)“一正二定三相等”的原則判斷最小值.8.【答案】【分析】根據(jù)題意得出,進(jìn)而可得出,結(jié)合基本不等式求的最小值即可.【詳解】因?yàn)槔锊?,由圖可知,步里,步里,,則,且,所以,,所以,,則,所以,該小城的周長(zhǎng)為(里).故答案為:.【點(diǎn)睛】易錯(cuò)點(diǎn)睛:利用基本不等式求最值時(shí),要注意其必須滿足的三個(gè)條件:(1)“一正二定三相等”“一正”就是各項(xiàng)必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項(xiàng)之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時(shí),必須驗(yàn)證等號(hào)成立的條件,若不能取等號(hào)則這個(gè)定值就不是所求的最值,這也是最容易發(fā)生錯(cuò)誤的地方.9.【答案】9【分析】第一空將化為,然后利用均值不等式即可求出結(jié)果;第二空利用柯西不等式即可求得結(jié)果.【詳解】因?yàn)檎龑?shí)數(shù)滿足,所以,當(dāng)且僅當(dāng)時(shí)取到最小值,由柯西不等式可知,,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以有.故答案為:9;.10.【答案】8【分析】利用乘“1”法及基本不等式計(jì)算可得;【詳解】解:因?yàn)?,,且,所以,?dāng)且僅當(dāng),即,時(shí)取等號(hào);故答案為:,11.【答案】118000【分析】根據(jù)已知條件建立函數(shù)關(guān)系式,然后化簡(jiǎn)整理,再利用均值不等式即可求解.【詳解】由題意,,又,有當(dāng)且僅當(dāng),即時(shí),等號(hào)成立所以當(dāng),最小且最小值為故答案為:,【點(diǎn)睛】利用基本不等式求最值時(shí),要注意三個(gè)必須滿足的條件:1.一正:各項(xiàng)必須均為正數(shù);2.二定:求和的最小值時(shí)必須把構(gòu)成的二項(xiàng)之積轉(zhuǎn)化成定值;求積的最大值時(shí),必須把構(gòu)成積的因式的和轉(zhuǎn)化為定值;3.三相等:利用均值不等式求最值時(shí),必須驗(yàn)證等號(hào)成立的條件,若不能取等號(hào)則這個(gè)定值就不是所求的最值.1.【答案】C【分析】利用基本不等式或排序不等式得,從而可判斷三個(gè)代數(shù)式不可能均大于,再結(jié)合特例可得三式中大于的個(gè)數(shù)的最大值.【詳解】法1:由基本不等式有,同理,,故,故不可能均大于.取,,,則,故三式中大于的個(gè)數(shù)的最大值為2,故選:C.法2:不妨設(shè),則,由排列不等式可得:,而,故不可能均大于.取,,,則,故三式中大于的個(gè)數(shù)的最大值為2,故選:C.【點(diǎn)睛】思路分析:代數(shù)式的大小問題,可根據(jù)代數(shù)式的積的特征選擇用基本不等式或拍雪進(jìn)行放縮,注意根據(jù)三角變換的公式特征選擇放縮的方向.2.【答案】C【分析】根據(jù)二次函數(shù)的性質(zhì)可判斷選項(xiàng)不符合題意,再根據(jù)基本不等式“一正二定三相等”,即可得出不符合題意,符合題意.【詳解】對(duì)于A,,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以其最小值為,A不符合題意;對(duì)于B,因?yàn)?,,?dāng)且僅當(dāng)時(shí)取等號(hào),等號(hào)取不到,所以其最小值不為,B不符合題意;對(duì)于C,因?yàn)楹瘮?shù)定義域?yàn)椋?,,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以其最小值為,C符合題意;對(duì)于D,,函數(shù)定義域?yàn)?,而且,如?dāng),,D不符合題意.故選:C.【點(diǎn)睛】本題解題關(guān)鍵是理解基本不等式的使用條件,明確“一正二定三相等”的意義,再結(jié)合有關(guān)函數(shù)的性質(zhì)即可解出.3.【答案】B【分析】因?yàn)椋傻秒p曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點(diǎn)坐標(biāo),即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點(diǎn)不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號(hào)的焦距的最小值:故選:B.【點(diǎn)睛】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時(shí),要檢驗(yàn)等號(hào)是否成立,考查了分析能力和計(jì)算能力,屬于中檔題.4.【答案】4【分析】根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《家居裝飾物流配送合同》
- 親子樂園主題裝修設(shè)計(jì)合同
- IT項(xiàng)目規(guī)劃與實(shí)施指南
- 企業(yè)法律合規(guī)風(fēng)險(xiǎn)防范指南
- 淘寶代理合同協(xié)議書
- 三農(nóng)村特色產(chǎn)業(yè)培育手冊(cè)
- 股份制企業(yè)的合作與管理文書
- 房地產(chǎn)開發(fā)合同標(biāo)準(zhǔn)協(xié)議
- 醫(yī)療設(shè)備智能制造與管理平臺(tái)開發(fā)
- 企業(yè)人力資源數(shù)字化管理與服務(wù)支持平臺(tái)方案設(shè)計(jì)
- 專項(xiàng)債券培訓(xùn)課件
- 中央企業(yè)人工智能應(yīng)用場(chǎng)景案例白皮書(2024年版)-中央企業(yè)人工智能協(xié)同創(chuàng)新平臺(tái)
- 《會(huì)務(wù)的組織和管理》課件
- 2024年公司領(lǐng)導(dǎo)在新年動(dòng)員會(huì)上的講話樣本(3篇)
- 《倒虹吸管安全評(píng)價(jià)導(dǎo)則》
- 2025年中國(guó)濕度傳感器行業(yè)深度分析、投資前景、趨勢(shì)預(yù)測(cè)報(bào)告(智研咨詢)
- 人民調(diào)解知識(shí)課件
- 《儒林外史》(第13-30回)-初中整本書閱讀系列之《儒林外史》
- 污水處理中的應(yīng)急預(yù)案與處置措施考核試卷
- 人教版道德與法治二年級(jí)下冊(cè)《第一單元 讓我試試看》大單元整體教學(xué)設(shè)計(jì)2022課標(biāo)
- 甘肅省蘭州市蘭煉一中2025屆數(shù)學(xué)高一上期末統(tǒng)考試題含解析
評(píng)論
0/150
提交評(píng)論